1
|
Zhang X, Zhuo J, Wang D, Zhu X. Supramolecular Polymers for Drug Delivery. Chemistry 2025; 31:e202404617. [PMID: 39961052 DOI: 10.1002/chem.202404617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Indexed: 03/21/2025]
Abstract
Supramolecular polymers are constructed through highly reversible and directionally specific non-covalent interactions between monomer units. This unique feature enables supramolecular polymers to undergo controlled structural reconfiguration and functional transformation in response to external stimuli, imparting them with high environmental responsiveness and self-healing properties. In particular, supramolecular polymers exhibit several specific advantages compared to conventional polymers, such as inherent degradability, the ease of preparation and the incorporation of functional units, and smart responsiveness to various biological stimuli. These characters make supramolecular polymers promising candidates for intelligent drug delivery systems in complex biological environments. In this review, we comprehensively summarize the latest developments and representative achievements of supramolecular polymers in drug delivery fields, focusing primarily on the design and synthesis, the properties and functionalities, and the practical applications of supramolecular polymers in small molecule drug delivery, gene therapy, and protein delivery. Finally, we highlight future research directions, focusing on multifunctionality, adaptability, and personalized therapy. We focus on recent studies that address key challenges in the field, providing rational polymer design, important properties, functionality, and understanding delivery strategies. These developments are expected to advance supramolecular polymers as new platforms of intelligent drug delivery systems, offering innovative solutions for the treatment of complex diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jiaxin Zhuo
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Shaikh S, Chary PS, Mehra NK. Supramolecular polymers: A perspective on the stability, biocompatibility and regulatory aspects. Int J Pharm 2025; 671:125277. [PMID: 39884590 DOI: 10.1016/j.ijpharm.2025.125277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Supramolecular polymers represent a distinctive class of polymers exhibiting similarities with covalent polymers, while also showcasing distinctive attributes such as responsiveness, reversibility, self-healing, and dynamism, which are conferred upon them by non-covalent interactions including hydrogen bonding, electrostatic interactions, van der Waals forces, π-π arrangements, and donor-acceptor interactions, among others. The noteworthy features of these supramolecular polymers have attracted considerable interest across diverse fields of science and technology, spanning electrochemistry, environmental science, drug delivery and tissue engineering. Nonetheless, the prevailing research focus in the realm of supramolecular polymers revolves around the advancement of novel methodologies aimed at synthesizing a broad spectrum of polymers characterized by diverse topologies. However, to fully capitalize on their potential applications within these domains, it is imperative to scrutinize these versatile polymers through the lens of thermodynamic and kinetic stability. Moreover, their integration into healthcare and medical realms necessitates rigorous assessment of safety and biocompatibility attributes. Thus, the present review endeavours to critically evaluate supramolecular polymers from perspectives of stability, safety, and regulatory considerations, thereby elucidating their potential for translation into commercial domains.
Collapse
Affiliation(s)
- Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad Telangana India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad Telangana India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad Telangana India.
| |
Collapse
|
3
|
Armstrong L, Chang SL, Clements N, Hirani Z, Kimberly LB, Odoi-Adams K, Suating P, Taylor HF, Trauth SA, Urbach AR. Molecular recognition of peptides and proteins by cucurbit[ n]urils: systems and applications. Chem Soc Rev 2024; 53:11519-11556. [PMID: 39415690 PMCID: PMC11484504 DOI: 10.1039/d4cs00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 10/19/2024]
Abstract
The development of methodology for attaching ligand binding sites to proteins of interest has accelerated biomedical science. Such protein tags have widespread applications as well as properties that significantly limit their utility. This review describes the mechanisms and applications of supramolecular systems comprising the synthetic receptors cucurbit[7]uril (Q7) or cucurbit[8]uril (Q8) and their polypeptide ligands. Molecular recognition of peptides and proteins occurs at sites of 1-3 amino acids with high selectivity and affinity via several distinct mechanisms, which are supported by extensive thermodynamic and structural studies in aqueous media. The commercial availability, low cost, high stability, and biocompatibility of these synthetic receptors has led to the development of myriad applications. This comprehensive review compiles the molecular recognition studies and the resulting applications with the goals of providing a valuable resource to the community and inspiring the next generation of innovation.
Collapse
Affiliation(s)
- Lilyanna Armstrong
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sarah L Chang
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Nia Clements
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Zoheb Hirani
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Keturah Odoi-Adams
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK, 73096, USA
| | - Paolo Suating
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Hailey F Taylor
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sara A Trauth
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Adam R Urbach
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| |
Collapse
|
4
|
Suating P, Kimberly LB, Ewe MB, Chang SL, Fontenot JM, Sultane PR, Bielawski CW, Decato DA, Berryman OB, Taylor AB, Urbach AR. Cucurbit[8]uril Binds Nonterminal Dipeptide Sites with High Affinity and Induces a Type II β-Turn. J Am Chem Soc 2024; 146:7649-7657. [PMID: 38348472 DOI: 10.1021/jacs.3c14045] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In an effort to target polypeptides at nonterminal sites, we screened the binding of the synthetic receptor cucurbit[8]uril (Q8) to a small library of tetrapeptides, each containing a nonterminal dipeptide binding site. The resulting leads were characterized in detail using a combination of isothermal titration calorimetry, 1H NMR spectroscopy, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and X-ray crystallography. The equilibrium dissociation constant values determined for the binding of Q8 to nonterminal dipeptide sites Lys-Phe (KF) and Phe-Lys (FK) were 60 and 86 nm, respectively. These are to the best of our knowledge the highest affinities reported to date for any synthetic receptor targeting a nonterminal site on an unmodified peptide. A 0.79 Å resolution crystal structure was obtained for the complex of Q8 with the peptide Gly-Gly-Leu-Tyr-Gly-Gly-Gly (GGLYGGG) and reveals structural details of the pair-inclusion motif. The molecular basis for recognition is established to be the inclusion of the side chains of Leu and Tyr residues, as well as an extensive network of hydrogen bonds between the peptide backbone, the carbonyl oxygens of Q8, and proximal water molecules. In addition, the crystal structure reveals that Q8 induces a type II β-turn. The sequence-selectivity, high affinity, reversibility, and detailed structural characterization of this system should facilitate the development of applications involving ligand-induced polypeptide folding.
Collapse
Affiliation(s)
- Paolo Suating
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Marc B Ewe
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Sarah L Chang
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - John M Fontenot
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Prakash R Sultane
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Alexander B Taylor
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8300 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Adam R Urbach
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| |
Collapse
|
5
|
Sun P, Qin B, Xu JF, Zhang X. Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Liu S, Yan T, Sun J, Li F, Xu J, Sun H, Yu S, Liu J. Biomimetic Cascade Polymer Nanoreactors for Starvation and Photodynamic Cancer Therapy. Molecules 2021; 26:molecules26185609. [PMID: 34577080 PMCID: PMC8470963 DOI: 10.3390/molecules26185609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
The selective disruption of nutritional supplements and the metabolic routes of cancer cells offer a promising opportunity for more efficient cancer therapeutics. Herein, a biomimetic cascade polymer nanoreactor (GOx/CAT-NC) was fabricated by encapsulating glucose oxidase (GOx) and catalase (CAT) in a porphyrin polymer nanocapsule for combined starvation and photodynamic anticancer therapy. Internalized by cancer cells, the GOx/CAT-NCs facilitate microenvironmental oxidation by catalyzing endogenous H2O2 to form O2, thereby accelerating intracellular glucose catabolism and enhancing cytotoxic singlet oxygen (1O2) production with infrared irradiation. The GOx/CAT-NCs have demonstrated synergistic advantages in long-term starvation therapy and powerful photodynamic therapy (PDT) in cancer treatment, which inhibits tumor cells at more than twice the rate of starvation therapy alone. The biomimetic polymer nanoreactor will further contribute to the advancement of complementary modes of spatiotemporal control of cancer therapy.
Collapse
Affiliation(s)
- Shengda Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (S.L.); (T.Y.); (J.X.); (H.S.)
| | - Tengfei Yan
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (S.L.); (T.Y.); (J.X.); (H.S.)
| | - Jianxin Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (J.S.); (F.L.)
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (J.S.); (F.L.)
| | - Jiayun Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (S.L.); (T.Y.); (J.X.); (H.S.)
| | - Hongcheng Sun
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (S.L.); (T.Y.); (J.X.); (H.S.)
| | - Shuangjiang Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (S.L.); (T.Y.); (J.X.); (H.S.)
- Correspondence: (S.Y.); (J.L.)
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (S.L.); (T.Y.); (J.X.); (H.S.)
- Correspondence: (S.Y.); (J.L.)
| |
Collapse
|
7
|
Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3326-3347. [PMID: 34313266 DOI: 10.1039/d1ay00954k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.
Collapse
Affiliation(s)
- Rachel E Sully
- Medway School of Pharmacy, Universities of Greenwich and Kent, Anson Building, Central Avenue, Chatham, ME4 4TB, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules 2021; 26:molecules26113310. [PMID: 34072932 PMCID: PMC8199157 DOI: 10.3390/molecules26113310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.
Collapse
|
9
|
Dhara M, Rudra S, Mukherjee N, Jana T. Hollow polymer nanocapsules with a ferrocenyl copolymer shell. Polym Chem 2021. [DOI: 10.1039/d1py00590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hollow polymer nanocapsules consisting of ferrocenyl shell have been developed by crosslinking the polymer chains grafted over silica nanoparticles synthesized via one pot surface-initiated RAFT polymerization.
Collapse
Affiliation(s)
- Moumita Dhara
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | - Somdatta Rudra
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | | | - Tushar Jana
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| |
Collapse
|
10
|
Kumar K, Paik P. Biomimicked and CPMV-Imprinted Hollow Porous Zinc Phosphate Nanocapsules and Their Therapeutic Efficiency. ACS APPLIED BIO MATERIALS 2020; 3:6005-6014. [PMID: 35021829 DOI: 10.1021/acsabm.0c00634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hollow zinc phosphate nanocapsules (hZPNCs) are an alloplastic biomaterial that has been synthesized to deliver chemotherapeutic drugs in a sustained manner. A very simple one-pot synthesis approach has been employed to synthesize hZPNCs by using cowpea mosaic virus (CPMV) in the presence of phosphate buffer (PBS) (0.01 M PBS, pH ∼7.2) with zinc acetate precursor. The synthesis mechanism of hZPNCs relies on the basis of biomineralization, where the precursor molecules initiate mineralization with the help of amino acid residues present on the CPMV capsid. The synthesized hollow nanocapsules were of diameter ∼50-60 nm and porous shell with thickness of ∼4 nm. The cavity performed as a reservoir for the anticancer drugs (DOX and IM). The release kinetic studies show the positive aspect of hZPNCs to be labeled as drug delivery cargo for sustained delivery. In vitro cytotoxic studies of hZPNCs and hZPNCs-chemo drugs on HEK293, HEPG2, and K562 cells were performed. The cytotoxic studies show that hZPNCs-DOX and hZPNCs-IM arrest the cell cycle of carcinoma cells (HEPG2 and K562 cells) at relatively low IC50 and that the inhibition efficiency is dosage dependent. Furthermore, through HRTEM, in vitro cellular interactions of carcinoma cells with hZPNCs and chemo drug-loaded hZPNCs were confirmed by the cryo-sectioning of cells before and after the incubation. These studies revealed the likely endocytic pathway for the nanocapsules entering the cell and executing the specific action of delivering the anticancer drugs. Together, these results reveal the hZPNCs as potential sustained drug delivery agents.
Collapse
Affiliation(s)
- Koushi Kumar
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai 600062, India.,School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 220 051, India.,School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
11
|
Zohreh N, Rastegaran Z, Hosseini SH, Akhlaghi M, Istrate C, Busuioc C. pH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111498. [PMID: 33255062 DOI: 10.1016/j.msec.2020.111498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Two core-double-shell pH-sensitive nanocarriers were fabricated using Fe3O4 as magnetic core, poly(glycidyl methacrylate-PEG) and salep dialdehyde as the first and the second shell, and doxorubicin as the hydrophobic anticancer drug. Two nanocarriers were different in the drug loading steps. The interaction between the first and the second shell assumed to be pH-sensitive via acetal cross linkages. The structure of nanocarriers, organic shell loading, magnetic responsibility, morphology, size, dispersibility, and drug loading content were investigated by IR, NMR, TG, VSM, XRD, DLS, HRTEM and UV-Vis analyses. The long-term drug release profiles of both nanocarriers showed that the drug loading before cross-linking between the first and second shell led to a more pH-sensitive nanocarrier exhibiting higher control on DOX release. Cellular toxicity assay (MTT) showed that DOX-free nanocarrier is biocompatible having cell viability greater than 80% for HEK-293 and MCF-7 cell lines. Besides, high cytotoxic effect observed for drug-loaded nanocarrier on MCF-7 cancer cells. Cellular uptake analysis showed that the nanocarrier is able to transport DOX into the cytoplasm and perinuclear regions of MCF-7 cells. In vitro hemolysis and coagulation assays demonstrated high blood compatibility of nanocarrier. The results also suggested that low concentration of nanocarrier have a great potential as a contrast agent in magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran.
| | - Zahra Rastegaran
- Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1414713135, Iran
| | - Cosmin Istrate
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Magurele, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
12
|
Behdarvand N, Bikhof Torbati M, Shaabanzadeh M. Tamoxifen-loaded PLA/DPPE-PEG lipid-polymeric nanocapsules for inhibiting the growth of estrogen-positive human breast cancer cells through cell cycle arrest. JOURNAL OF NANOPARTICLE RESEARCH 2020; 22:262. [DOI: 10.1007/s11051-020-04990-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2025]
|
13
|
Zhang Y, Uthaman S, Song W, Eom KH, Jeon SH, Huh KM, Babu A, Park IK, Kim I. Multistimuli-Responsive Polymeric Vesicles for Accelerated Drug Release in Chemo-photothermal Therapy. ACS Biomater Sci Eng 2020; 6:5012-5023. [DOI: 10.1021/acsbiomaterials.0c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yu Zhang
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Wenliang Song
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kuen Hee Eom
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Su Hyeon Jeon
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Amal Babu
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|