1
|
Liu L, Liao Y, Li L, Ma H, Shi H, Yu W. Supramolecular Host-Guest System That Realizes Adaptive Selection of the Guest through Ligand Regulation. Inorg Chem 2025; 64:4345-4354. [PMID: 39991989 DOI: 10.1021/acs.inorgchem.4c04872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In host-guest chemistry, preserving the original supramolecular topology while achieving the selective recognition and encapsulation of various guest molecules remains a key challenge. In this study, we successfully designed and synthesized a series of bifunctional pyridine ligands derived from 9,9'-bianthracene, which were then coupled with half-sandwiched Cp*Ir/Rh building blocks to form tetranuclear supramolecular metallacycles. Through precise tuning of the ligands' dimensions and the conjugation areas of the building blocks, we effectively directed the host-guest system within these supramolecular structures. We further explored the spatial conformational factors influencing guest molecule screening. The unique properties of the three bidentate pyridyl ligands significantly affected the intra/intermolecular π-π stacking, CH-π interactions, and hydrogen bonding, which in turn influenced the system's ability to recognize and tolerate different guest molecules. Self-sorting investigations revealed a selective preference for certain ligands and building blocks during macrocyclic formation with no interference from externally imposed guest molecules. These studies also demonstrated the remarkable topological stability of the ligated macrocycles, ensuring high-intensity conformational integrity. The specific structures and behaviors of these supramolecular metallacycles were confirmed by using single-crystal X-ray diffraction, nuclear magnetic resonance (NMR), and mass spectrometry techniques.
Collapse
Affiliation(s)
- Liangchen Liu
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan 243002, P. R. China
| | - Yuluan Liao
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan 243002, P. R. China
| | - Lianxiang Li
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan 243002, P. R. China
| | - Huirong Ma
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan 243002, P. R. China
| | - Huatian Shi
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan 243002, P. R. China
| | - Weibin Yu
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan 243002, P. R. China
| |
Collapse
|
2
|
Alam M, Sangwan R, Agashe C, Gill AK, Patra D. Autonomous macroscopic signal deciphering the geometric self-sorting of pillar[ n]arenes. Chem Commun (Camb) 2023; 59:6016-6019. [PMID: 37128696 DOI: 10.1039/d3cc01372c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this communication, we have deciphered the geometric self-sorting of pillar[n]arenes by analyzing the fluid flow pattern obtained during the self-assembly of complementary pillar[n]arenes on the surface. The concept was further extended to demonstrate flow manipulation inside a microchannel where multiple sites were available for self-sorting, and the resultant flow velocity was tuned by the feeding ratio of the complementary pairs.
Collapse
Affiliation(s)
- Mujeeb Alam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Rekha Sangwan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Chinmayee Agashe
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Arshdeep Kaur Gill
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
3
|
Chen G, Shi P, Zeng L, Feng L, Wang X, Lin X, Sun Y, Fang H, Cao X, Wang X, Yang L, Tian Z. Supramolecular copolymerization through self-correction of non-polymerizable transient intermediates. Chem Sci 2022; 13:7796-7804. [PMID: 35865888 PMCID: PMC9258341 DOI: 10.1039/d2sc01930b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Kinetic control over structures and functions of complex assembly systems has aroused widespread interest. Understanding the complex pathway and transient intermediates is helpful to decipher how multiple components evolve into complex assemblies. However, for supramolecular polymerizations, thorough and quantitative kinetic analysis is often overlooked. Challenges remain in collecting the information of structure and content of transient intermediates in situ with high temporal and spatial resolution. Here, the unsolved evolution mechanism of a classical self-sorting supramolecular copolymerization system was addressed by employing multidimensional NMR techniques coupled with a microfluidic technique. Unexpected complex pathways were revealed and quantitatively analyzed. A counterintuitive pathway involving polymerization through the 'error-correction' of non-polymerizable transient intermediates was identified. Moreover, a 'non-classical' step-growth polymerization process controlled by the self-sorting mechanism was unraveled based on the kinetic study. Realizing the existence of transient intermediates during self-sorting can encourage the exploitation of this strategy to construct kinetic steady state assembly systems. Moreover, the strategy of coupling a microfluidic technique with various characterization techniques can provide a kinetic analysis toolkit for versatile assembly systems. The combined approach of coupling thermodynamic and kinetic analyses is indispensable for understanding the assembly mechanisms, the rules of emergence, and the engineering of complex assembly systems.
Collapse
Affiliation(s)
- Ganyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Peichen Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Longhui Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Liubin Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xiuxiu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xujing Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Yibin Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Hongxun Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University Xiamen 361005 P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
4
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
5
|
Duan Z, Xu F, Huang X, Qian Y, Li H, Tian W. Crown Ether-Based Supramolecular Polymers: From Synthesis to Self-Assembly. Macromol Rapid Commun 2021; 43:e2100775. [PMID: 34882882 DOI: 10.1002/marc.202100775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/05/2021] [Indexed: 11/09/2022]
Abstract
Supramolecular polymers not only possess many advantages of traditional polymers, but also have many unique characteristics. Supramolecular polymers can be constructed by self-assembly of various noncovalent interactions. Host-guest interaction, as one important type of noncovalent interactions, has been widely applied to construct supramolecular polymers. From the perspective of classification of the recognition system motifs, host-guest recognition motifs mainly include crown ether, cyclodextrin, calixarene, cucurbituril, and pillararene-based host-guest recognition pairs. Crown ethers, as the first-generation macrocyclic hosts, have played a very important part in the development of supramolecular chemistry. Due to the easy modification of crown ethers, various crown ether derivatives have been prepared by attaching some functional groups to the edges of crown ethers, which endowed them with some interesting properties and made them ideal candidates for the fabrication of supramolecular polymers. This review gives a review of the preparation of crown ether-based supramolecular polymers (CSPs) and summarizes crown ether-based recognition pairs, organization methods, topological structures, stimuli-responsiveness, and functional characteristics.
Collapse
Affiliation(s)
- Zhaozhao Duan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Fenfen Xu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xiaohui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yongchao Qian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
6
|
Zhang Y, Chen F, Li Y, Qiu H, Zhang J, Yin S. Supramolecular Polymer Networks with Enhanced Mechanical Properties: The Marriage of Covalent Polymer and Metallacycle
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yue‐Yue Zhang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Feng Chen
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Hua‐Yu Qiu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Jin‐Jin Zhang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Shou‐Chun Yin
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| |
Collapse
|
7
|
Wang K, Shao YG, Yan FZ, Zhang Z, Li S. Construction of Supramolecular Polymers with Different Topologies by Orthogonal Self-Assembly of Cryptand-Paraquat Recognition and Metal Coordination. Molecules 2021; 26:952. [PMID: 33670156 PMCID: PMC7916833 DOI: 10.3390/molecules26040952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, metal-coordinated orthogonal self-assembly has been used as a feasible and efficient method in the construction of polymeric materials, which can also provide supramolecular self-assembly complexes with different topologies. Herein, a cryptand with a rigid pyridyl group on the third arm derived from BMP32C10 was synthesized. Through coordination-driven self-assembly with a bidentate organoplatinum(II) acceptor or tetradentate Pd(BF4)2•4CH3CN, a di-cryptand complex and tetra-cryptand complex were prepared, respectively. Subsequently, through the addition of a di-paraquat guest, linear and cross-linked supramolecular polymers were constructed through orthogonal self-assembly, respectively. By comparing their proton nuclear magnetic resonance (1H NMR) and diffusion-ordered spectroscopy (DOSY) spectra, it was found that the degrees of polymerization were dependent not only on the concentrations of the monomers but also on the topologies of the supramolecular polymers.
Collapse
Affiliation(s)
- Kai Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan-Guang Shao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Feng-Zhi Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Li H, Yang Y, Xu F, Duan Z, Li R, Wen H, Tian W. Sequence-controlled supramolecular copolymer constructed by self-sorting assembly of multiple noncovalent interactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01540g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A sequence-controlled supramolecular copolymer was constructed by self-sorting assembly of metal coordination and two types of host–guest interactions.
Collapse
Affiliation(s)
- Hui Li
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Ying Yang
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Fenfen Xu
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Zhaozhao Duan
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Riqiang Li
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Herui Wen
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| |
Collapse
|
9
|
Ju H, Zhou X, Shi B, Kong X, Xing H, Huang F. A pillar[5]arene-based hydrogel adsorbent in aqueous environments for organic micropollutants. Polym Chem 2019. [DOI: 10.1039/c9py01373c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A pillar[5]arene-based hydrogel adsorbent was prepared for the removal of multiple types of organic micropollutants based on host–guest interactions.
Collapse
Affiliation(s)
- Huaqiang Ju
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xiaoqi Zhou
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Bingbing Shi
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xueqian Kong
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Hao Xing
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|