1
|
Shi D, Yan Z, Du S. First principles design of two dimensional TiSSe Janus drug delivery system for nitrosourea. RSC Adv 2024; 14:31433-31438. [PMID: 39363995 PMCID: PMC11447516 DOI: 10.1039/d4ra05119j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
In this paper, we delved into the exploration of a novel drug delivery platform for nitrosourea, leveraging a Janus-structured two-dimensional material, TiSSe, as the carrier. Our approach was grounded in a comprehensive application of first-principles computational methods. By evaluating the adsorption energies across a spectrum of potential configurations, we demonstrated the favorable attributes of TiSSe as a carrier for nitrosourea. Our in-depth examination of the electronic structure unveiled intriguing insights. The Janus nature of TiSSe imparts distinct adsorption profiles to nitrosourea molecules at the sulfur (S) and selenium (Se) terminated surfaces. This disparity in electronic properties not only facilitates precise detection but also helps the design of more intriguing two-dimensional materials.
Collapse
Affiliation(s)
- Diwei Shi
- School of Naval Architecture and Maritime, Zhejiang Ocean University Zhoushan Zhejiang 316022 People's Republic China
| | - Zhengwei Yan
- School of Mechanical Engineering, Nantong Institute of Technology People's Republic China
| | - Shiyu Du
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 People's Republic of China
| |
Collapse
|
2
|
He HL, Liang FX. Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Chen Q, Huang W, Duan P, Yue T, Zhang L, Wu X, Liu J. Manipulating the mechanical properties of cis-polyisoprene nanocomposites via molecular dynamics simulation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Suzuki R, Yamauchi Y, Sugahara Y. Inorganic material-based Janus nanosheets: asymmetrically functionalized 2D-inorganic nanomaterials. Dalton Trans 2022; 51:13145-13156. [PMID: 35997213 DOI: 10.1039/d2dt01557a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past decade, various inorganic material-based Janus nanosheets have been prepared and their applications have been proposed. Inorganic material-based Janus nanosheets have various advantages over polymer-based Janus nanosheets, including the maintenance of their characteristic two-dimensional shape, and are expected to be applied as unique functional materials. Methods for regioselective functionalization of the two sides of the individual nanosheets are extremely important for the development of inorganic material-based Janus nanosheets. In this review, the preparation methods and applications of inorganic material-based Janus nanosheets are summarized from the point of view of inorganic nanosheet functionalization.
Collapse
Affiliation(s)
- Ryoko Suzuki
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,Nikon Corporation, 1-10-1, Asamizodai, Minami-ku, Sagamihara, Kanagawa 252-0328, Japan
| | - Yusuke Yamauchi
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshiyuki Sugahara
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Zhang M, Jiang C, Wu Q, Zhang G, Liang F, Yang Z. Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Layered Composite Gas Barrier Membranes by Anisotropic Janus Nanosheets Compartibilizers. ACS Macro Lett 2022; 11:657-662. [PMID: 35570811 DOI: 10.1021/acsmacrolett.2c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly(lactic acid) (PLA), one of the most promising biodegradable polymer products, has achieved wide applications for its relatively good mechanical properties and moderate degradability. Here we report an environment-friendly filler, the organic-inorganic composite Janus nanosheets (PLA/PBS JNs), which can jam at the interface of the PLA/PBS blend with a low threshold as the compatibilizer and can simultaneously toughen the composites and improve the gas barrier performance due to better interfacial interaction and tortuous path effect. With 0.3 wt % of PLA/PBS JNs added, the tensile strength and elongation at break of the PLA/PBS blend can be improved by 37% and 224%, respectively. After a further hot-pressing process, the barrier performance of the PLA/PBS composite membranes can be significantly enhanced since PLA, PLA/PBS JNs, and PBS are arranged in a nearly lamellar structure with oxygen permeability of 0.63 × 10-15 cm3 cm·cm-2 s-1 Pa-1 with only 0.5 wt % of PLA/PBS JNs.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Chao Jiang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiuhua Wu
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Guolin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Hu L, Han Y, Rong C, Wang X, Wang H, Li Y. Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11016-11027. [PMID: 35171566 DOI: 10.1021/acsami.1c24817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfacial nanoparticle compatibilization (INC) strategy has opened up a promising avenue toward simultaneous functionalization and interfacial engineering of immiscible polymer blends. While the INC mechanism has been well developed recently, few investigations have focused on rigid nanoplatelets because of the inherent steric hindrance of the surface-grafted polymer chains. Herein, surface-modified rigid nanoplatelets have been incorporated into an immiscible poly(l-lactide) (PLLA)/poly(butylene succinate) (PBSU) blend. It is demonstrated that the strong interfacial adhesion between PLLA and PBSU phases is promoted via molecular entanglements of the grafted chains on the surface of nanoplatelets with the individual components. A refined phase morphology with improved mechanical properties can be achieved with the addition of 5 wt % modified Gibbsite nanoplatelets. It was further found that the stiffness of nanoplatelets can change the geometry of the interface significantly. It is, therefore, indicated that the simultaneous interface strengthening and interfacial curvature controlling of rigid nanoplatelets originate from the selective swelling/collapse of the in situ-formed PLLA and PBSU grafts within the corresponding phase at the interface. Such a mechanism is confirmed by the Monte Carlo simulations. This work provides new opportunities for the fabrication of advanced polymer blend nanocomposites.
Collapse
Affiliation(s)
- Lingmin Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yuanyuan Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, People's Republic of China
| | - Chenyan Rong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xiaokan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Yu H, Zheng Z, Hu B, Ye Z, Zhu X, Zhao Y, Wang H. Facile and scalable synthesis of functional Janus nanosheets - A polyethoxysiloxane assisted surfactant-free high internal phase emulsion approach. J Colloid Interface Sci 2022; 606:1554-1562. [PMID: 34500158 DOI: 10.1016/j.jcis.2021.08.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/18/2023]
Abstract
HYPOTHESIS Janus nanosheets, which have two surfaces of different functionalities, exhibit unique interfacial properties. In this work, we propose a facile and scalable technique for preparation of silica-based Janus nanosheets, which is based on formation of high internal phase water-in-oil emulsions stabilized solely by alkyl-substituted polyethoxysiloxanes due to their hydrolysis-induced interfacial activity. EXPERIMENTS Janus nanosheets are then obtained by crushing the silica foams converted from such emulsions. The morphology of Janus nanosheets is investigated by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The chemical structure of functional silica materials is characterized by Fourier transform infrared spectroscopy (FT-IR). The asymmetric structure of silica nanosheets is observed by confocal laser scanning microscopy. FINDINGS The resulting nanosheets have a rough hydrophobic surface and a smooth hydrophilic one, and are capable of stabilizing Pickering oil-in-water emulsions. Remarkably, pH-responsiveness of emulsions can be attained using the nanosheets whose hydrophilic surface is substituted with amino groups. Fast oil-water separation is achieved by the Janus nanosheets, which has been demonstrated by the nanosheets with a polystyrene-coated hydrophobic surface. This work paves a new avenue for large-scale production of functional silica-based Janus nanosheets suitable for numerous promising applications.
Collapse
Affiliation(s)
- Heng Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Bintao Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xiaomin Zhu
- DWI-Leibniz-Institute for Interactive Materials e.V. and Institute for Technical and Macromolecular Chemistry of RWTH Aachen University, Aachen 52056, Germany.
| | - Yongliang Zhao
- Shanghai Dilato Materials Co., Ltd, Shanghai 200433, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Chen Y, Liang Y, Wang L, Guan M, Zhu Y, Yue X, Huang X, Lu G. Preparation and applications of freestanding Janus nanosheets. NANOSCALE 2021; 13:15151-15176. [PMID: 34486634 DOI: 10.1039/d1nr04284j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the family of Janus nanomaterials, Janus nanosheets possess not only the advantages of Janus nanomaterials, but also the advantages of two-dimensional nanosheets, endowing them with many extraordinary properties. Therefore, Janus nanosheets have great potential in the fields of interfacial engineering, catalysis, and molecular recognition. This review summarizes and discusses the recent advances in both the preparation and applications of freestanding Janus nanosheets. After a short introduction to different types of Janus nanosheets, a variety of methods for preparing freestanding Janus nanosheets are introduced, including the surface reaction, interface reaction, emulsion reaction, self-assembly, and stripping of non-Janus nanosheets, as well as selective grafting of existing Janus nanosheets. Then, the wide applications of Janus nanosheets in the fields of emulsification, catalysis, polymer reinforcement, nanomotors, and molecular recognition are summarized in detail. Finally, a discussion on the remaining challenges and future perspectives in this field is included. This review will not only deepen the understanding of Janus nanosheets, but also benefit the designs and fabrications of extraordinary and multi-functional Janus nanosheets.
Collapse
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Li Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoping Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
|
10
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|
11
|
Guan J, Gui H, Zheng Y, You J, Li Y, Liang F, Yang Z. Stabilizing Polymeric Interface by Janus Nanosheet. Macromol Rapid Commun 2020; 41:e2000392. [PMID: 32833324 DOI: 10.1002/marc.202000392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Indexed: 12/19/2022]
Abstract
A strategy is proposed to stabilize the polymeric interface by using the irregular Janus nanosheet (JNS). The poly(vinylidene fluoride) (PVDF)/poly(l-lactic acid) (PLLA) at 60/40 (wt/wt) with a bi-continuous structure is selected as the model melt blend, and the PMMA/epoxy JNS is synthesized and used as the compatibilizer. The JNS is preferentially located at the interface. The interfacial coverage by the JNS reaches a saturated state forming the interconnected jamming structure at 0.5 wt% of the JNS. The interface is thus stabilized which is well preserved after annealing at high temperature. After selectively etching PLLA, the robust PVDF porous material is derived with the JNS armored at the pore skeleton surface. The porous material provides a universal scaffold to achieve stable functional materials after filling the pores.
Collapse
Affiliation(s)
- Jipeng Guan
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoguan Gui
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanyan Zheng
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jichun You
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Azizli MJ, Rezaeinia S, Rezaeeparto K, Mokhtary M, Askari F. Enhanced compatibility, morphology, rheological and mechanical properties of carboxylated acrylonitrile butadiene rubber/chloroprene rubber/graphene nanocomposites: effect of compatibilizer and graphene content. RSC Adv 2020; 10:11777-11790. [PMID: 35496602 PMCID: PMC9050813 DOI: 10.1039/d0ra00517g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022] Open
Abstract
Elastomeric nanocomposites were prepared from carboxylated acrylonitrile butadiene rubber/chloroprene rubber (XNBR/CR), graphene and a glycidyl methacrylate (GMA)-grafted XNBR (XNBR-g-GMA) compatibilizer by using a two-roll mill. The effect of graphene and XNBR-g-GMA compatibilizer on curing characteristics, rheological and mechanical properties and morphology of the nanocomposites was investigated. The curing properties and the morphology of the nanocomposites were studied by rheometry, SEM and TEM, respectively. The results of rheometry showed that by adding the XNBR-g-GMA compatibilizer and increasing the graphene content, the scorch time and optimum curing time decreased, but the torque increased, while the curing time increased with increasing CR percentage in the blend. Also, the results of DMTA tests showed that by adding the XNBR-g-GMA compatibilizer, there was compatibility between CR and XNBR and the dispersion of graphene in the XNBR/CR matrix was improved. This phenomenon was confirmed by direct observation of exfoliated graphene nanosheets by TEM. Also, the addition of XNBR-g-GMA and the increase of graphene content in the XNBR/CR matrix caused the fracture surface of the samples to be roughened and the size of dispersed phase (CR) in the XNBR matrix becomes smaller. The results of mechanical properties showed that the addition of the XNBR-g-GMA and increasing the graphene content resulted in increased hardness, fatigue strength, tensile strength, modulus and elongation-at-break.
Collapse
Affiliation(s)
- Mohammad Javad Azizli
- Department of Chemistry and Chemical Engineering, Rasht Branch, Islamic Azad University Rasht Iran +989121410709 +982188333417.,Zolal Gostar Rooz, Technical Inspection and Consulting Engineers CO P.O. Box: 14139-74513 Tehran Iran
| | - Sheida Rezaeinia
- Zolal Gostar Rooz, Technical Inspection and Consulting Engineers CO P.O. Box: 14139-74513 Tehran Iran.,Department of Chemical Engineering, Amirkabir University of Technology P.O. Box: 15875-4413 Tehran Iran
| | | | - Masoud Mokhtary
- Department of Chemistry and Chemical Engineering, Rasht Branch, Islamic Azad University Rasht Iran +989121410709 +982188333417
| | - Fahimeh Askari
- Iran Polymer and Petrochemical Institute P.O. Box: 14965/115 Tehran Iran
| |
Collapse
|