1
|
Chu B, Song F, Zou H. Controlled synthesis of β-cyclodextrin-based starlike helical poly(phenyl isocyanide) and its application in chiral resolution. Carbohydr Polym 2025; 357:123456. [PMID: 40158987 DOI: 10.1016/j.carbpol.2025.123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/09/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
In an effort to expand the diversity of helical polymers exhibiting intricate structures, a strategy for the precise fabrication of β-cyclodextrin-based star polymers adorned with helical poly(phenyl isocyanide) (PPI) arms has been successfully realized through the integration of isocyanide polymerization and atom transfer radical polymerization (ATRP). An elegant β-cyclodextrin embellished with 7 Pd(II) complexes on one side and 14 bromine groups on the other side, denoted as ((Pd(II))7-CD-(Br)14), was initially synthesized. Subsequently, the (PPI)7-CD-(Br)14 was synthesized through the polymerization of the phenyl isocyanide monomer initiated with (Pd(II))7-CD-(Br)14. Finally, starlike PPI was obtained by ATRP of 1,2-diacrylyl ethane initiated via the macro-initiator of (PPI)7-CD-(Br)14. Circular dichroism measurement analysis indicated that the obtained starlike PPI exhibited a consistent helical conformation with a preferred handedness, and it was revealed that the helical structure of starlike PPI originated from the PPI backbone, rather than intermolecular aggregation in solutions. Furthermore, the starlike PPI demonstrated excellent efficacy in the chiral resolution of racemic compounds, achieving an enantiomeric excess (e.e.) of 92 % for threonine racemates when used as a chiral resolution agent.
Collapse
Affiliation(s)
- Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 23200, Anhui, China.
| | - Feiyang Song
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 23200, Anhui, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
2
|
Cabrera-Quiñones NC, López-Méndez LJ, Cruz-Hernández C, Guadarrama P. Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine. Int J Mol Sci 2024; 26:36. [PMID: 39795895 PMCID: PMC11719597 DOI: 10.3390/ijms26010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025] Open
Abstract
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms-can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA) and thiol-ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities-all essential in the field of nanomedicine.
Collapse
Affiliation(s)
| | - Luis José López-Méndez
- Biological Systems Deparment, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Villa Quietud, Mexico City 04960, Mexico;
| | - Carlos Cruz-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05300, Mexico;
| | - Patricia Guadarrama
- Materials Research Institute, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
3
|
Rahman M, Ali A, Sjöholm E, Soindinsalo S, Wilén CE, Bansal KK, Rosenholm JM. Significance of Polymers with “Allyl” Functionality in Biomedicine: An Emerging Class of Functional Polymers. Pharmaceutics 2022; 14:pharmaceutics14040798. [PMID: 35456632 PMCID: PMC9025249 DOI: 10.3390/pharmaceutics14040798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, polymer-based advanced drug delivery and tissue engineering have grown and expanded steadily. At present, most of the polymeric research has focused on improving existing polymers or developing new biomaterials with tunable properties. Polymers with free functional groups offer the diverse characteristics needed for optimal tissue regeneration and controlled drug delivery. Allyl-terminated polymers, characterized by the presence of a double bond, are a unique class of polymers. These polymers allow the insertion of a broad diversity of architectures and functionalities via different chemical reactions. In this review article, we shed light on various synthesis methodologies utilized for generating allyl-terminated polymers, macromonomers, and polymer precursors, as well as their post-synthesis modifications. In addition, the biomedical applications of these polymers reported in the literature, such as targeted and controlled drug delivery, improvement i aqueous solubility and stability of drugs, tissue engineering, and antimicrobial coatings, are summarized.
Collapse
Affiliation(s)
- Mijanur Rahman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, 20520 Turku, Finland; (M.R.); (A.A.); (E.S.); (S.S.)
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland;
| | - Aliaa Ali
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, 20520 Turku, Finland; (M.R.); (A.A.); (E.S.); (S.S.)
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, 20520 Turku, Finland; (M.R.); (A.A.); (E.S.); (S.S.)
| | - Sebastian Soindinsalo
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, 20520 Turku, Finland; (M.R.); (A.A.); (E.S.); (S.S.)
| | - Carl-Eric Wilén
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland;
| | - Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, 20520 Turku, Finland; (M.R.); (A.A.); (E.S.); (S.S.)
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland;
- Correspondence: (K.K.B.); (J.M.R.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, 20520 Turku, Finland; (M.R.); (A.A.); (E.S.); (S.S.)
- Correspondence: (K.K.B.); (J.M.R.)
| |
Collapse
|
4
|
Seidi F, Jin Y, Xiao H. Polycyclodextrins: Synthesis, functionalization, and applications. Carbohydr Polym 2020; 242:116277. [PMID: 32564845 DOI: 10.1016/j.carbpol.2020.116277] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023]
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides with unique conical structure enabling host-guest inclusion complexes. However, virgin CDs sufferfrom low solubility, lack of functional groups and its inability to strong complexation with the guests. One of the most efficient ways to improve the properties of cyclodextrins is the synthesis of polycyclodextrins. Generally, there are two types of polycyclodextrins: 1) polymers containing CD units as parts of the main backbone; and 2) polymers with CD units as side chains. These polycyclodextrins are produced (i) from direct copolymerization of virgin cyclodextrins or cyclodextrins derivatives with various monomers including isocyanates, epoxides, carboxylic acids, anhydrides, acrylates, acrylamides and fluorinated aromatic compounds, or (ii) by post-functionalization of other polymers with CDs or CD derivatives.. By selecting the proper derivatives of CDs and controlling the polymerization, polycyclodextrins with linear, hyperbranched, and crosslinked structures have been synthesized. Polycyclodextrins have found significant applications in numerous areas, as adsorbents for removal of organic pollutants, carriers in gene/drug delivery, and for preparation of supramolecular based hydrogels. The focus of this review paper is placed on the synthesis, characterization, and applications of CDs so as to highlight challenges as well as the promising features of the future ahead of material developments based on CDs.
Collapse
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| |
Collapse
|
5
|
Hao B, Lu G, Zhang S, Li Y, Ding A, Huang X. Gold nanoparticles standing on PEG/PAMAM/thiol-functionalized nanographene oxide as aqueous catalysts. Polym Chem 2020. [DOI: 10.1039/d0py00471e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gold nanoparticles were aptly in situ grown on PEG/PAMAM/thiol-functionalized nanographene oxide platforms for aqueous catalysis.
Collapse
Affiliation(s)
- Bingjie Hao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Aishun Ding
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
6
|
Przybyla MA, Yilmaz G, Becer CR. Natural cyclodextrins and their derivatives for polymer synthesis. Polym Chem 2020. [DOI: 10.1039/d0py01464h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A toolbox of cyclodextrin derivatives, synthetic strategies for the preparation of cyclodextrin-polymer conjugates using various polymerisation techniques and representative applications of such conjugates are discussed.
Collapse
Affiliation(s)
| | - Gokhan Yilmaz
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|