1
|
Watanabe K, Ikeda J, Zhong X, Zhou J, Kaneko T, Kawai M, Mitsumata T. Electric Conductivity Transitions of Water-Absorbable Polybenzimidazole Films. Polymers (Basel) 2025; 17:167. [PMID: 39861240 PMCID: PMC11768338 DOI: 10.3390/polym17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Transitions seen in the electric properties of water-absorbable poly(2,5-benzimidazole) (ABPBI) films were confirmed by electric conductivity, dielectric constant, and time-domain nuclear magnetic resonance (NMR) measurements. The electric resistance of the films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in the frequency range of 90 Hz to 8 MHz. The water absorption ratio at equilibrium absorption for the films was 37%, which corresponded to a volume fraction of water of 0.33. The electric conductivity of the films without water absorption was ~1014 S·cm-1, and it increased to ~1010 S·cm-1 with increasing volume fraction, showing a percolation threshold at a volume fraction of 0.025, and remarkable transitions at volume fractions of 0.075 and 0.135. The dielectric constant of the films without water absorption was 3.4, and it increased to 8.1 with increasing volume fraction, showing a transition only at a volume fraction of 0.135. Above a volume fraction of 0.075, where a transition in conductivity was observed, there were two relaxation times at 18-31 μs and 20-93 μs, as determined from the time-domain NMR, and these relaxation times increased with increasing volume fraction. The longer relaxation time increased significantly at a volume fraction of 0.072, which was close to the volume fraction of the transition seen in conductivity. The relationship between the chain mobility of ABPBI and the deterioration in electric insulating properties is discussed.
Collapse
Affiliation(s)
- Kaito Watanabe
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Junko Ikeda
- Mageleka Japan Co., Ltd., Kashiwa 277-0882, Japan
| | - Xianzhu Zhong
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
| | - Jiabei Zhou
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Mika Kawai
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Tetsu Mitsumata
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
2
|
Guo M, Ban T, Wang Y, Wang X, Zhu X. "Thiol-ene" crosslinked polybenzimidazoles anion exchange membrane with enhanced performance and durability. J Colloid Interface Sci 2023; 638:349-362. [PMID: 36746053 DOI: 10.1016/j.jcis.2023.01.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
To address the "trade-off" between conductivity and stability of anion exchange membranes (AEMs), we developed a series of crosslinked AEMs by using polybenzimidazole with norbornene (cPBI-Nb) as backbone and the crosslinked structure was fabricated by adopting click chemical between thiol and vinyl-group. Meanwhile, the hydrophilic properties of the dithiol cross-linker were regulated to explore the effect for micro-phase separation morphology and hydroxide ion conductivity. As result, the AEMs with hydrophilic crosslinked structure (PcPBI-Nb-C2) not only had apparent micro-phase separation morphology and high OH- conductivity of 105.54 mS/cm at 80 °C, but also exhibited improved mechanical properties, dimensional stability (swelling ratio < 15%) and chemical stability (90.22 % mass maintaining in Fenton's reagent at 80 °C for 24 h, 78.30 % conductivity keeping in 2 M NaOH at 80 °C for 2016 h). In addition, the anion exchange membranes water electrolysis (AEMWEs) using PcPBI-Nb-C2 as AEMs achieved the current density of 368 mA/cm2 at 2.1 V and the durability over 500 min operated at 150 mA/cm2 under 60 °C. Therefore, this work paves the way for constructing AEMs by introduction of norbornene into polybenzimidazole and formation of hydrophilic crosslinked structure based on "thiol-ene".
Collapse
Affiliation(s)
- Maolian Guo
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Tao Ban
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Yajie Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiuling Zhu
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Aliphatic Polybenzimidazoles: Synthesis, Characterization and High-Temperature Shape-Memory Performance. Polymers (Basel) 2023; 15:polym15061399. [PMID: 36987180 PMCID: PMC10055794 DOI: 10.3390/polym15061399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
A series of aliphatic polybenzimidazoles (PBIs) with methylene groups of varying length were synthesized by the high-temperature polycondensation of 3,3′-diaminobenzidine (DAB) and the corresponding aliphatic dicarboxylic acid in Eaton’s reagent. The influence of the length of the methylene chain on PBIs’ properties was investigated by solution viscometry, thermogravimetric analysis, mechanical testing and dynamic mechanical analysis. All PBIs exhibited high mechanical strength (up to 129.3 ± 7.1 MPa), glass transition temperature (≥200 °C) and thermal decomposition temperature (≥460 °C). Moreover, all of the synthesized aliphatic PBIs possess a shape-memory effect, which is a result of the presence of soft aliphatic segments and rigid bis-benzimidazole groups in the macromolecules, as well as strong intermolecular hydrogen bonds that serve as non-covalent crosslinks. Among the studied polymers, the PBI based on DAB and dodecanedioic acid has high adequate mechanical and thermal properties and demonstrates the highest shape-fixity ratio and shape-recovery ratio of 99.6% and 95.6%, respectively. Because of these properties, aliphatic PBIs have great potential to be used as high-temperature materials for application in different high-tech fields, including the aerospace industry and structural component industries.
Collapse
|
4
|
Satheesh Kumar B, Roshith K, Unnikrishnan G, K.S SK. Metal organic framework enroutes to mechanically stable and high proton conductive polybenzimidazole membranes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Jiao Y, Liu M, Wu Q, Zheng P, Xu W, Ye B, Zhang H, Guo R, Luo S. Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Prakash O, Tiwari S, Maiti P. Fluoropolymers and Their Nanohybrids As Energy Materials: Application to Fuel Cells and Energy Harvesting. ACS OMEGA 2022; 7:34718-34740. [PMID: 36211045 PMCID: PMC9535728 DOI: 10.1021/acsomega.2c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The current review article provides deep insight into the fluoropolymers and their applications in energy technology, especially in the field of energy harvesting and the development of fuel cell electrolyte polymeric membranes. Fluoropolymers have gained wide attention in the field of energy applications due to their versatile properties. The incorporation of nanofillers within the fluoropolymer to develop the nanohybrid results in an enhancement in the properties, like thermal, mechanical, gas permeation, different fuel cross-over phenomena through the membrane, hydrophilic/hydrophobic nature, ion transport, and piezo-electric properties for fabricating energy devices. The properties of nanohybrid materials/membranes are influenced by several factors, such as type of filler, their size, amount of filler, level of dispersion, surface acidity, shape, and formation of networking within the polymer matrix. Fluoropolymer-based nanohybrids have replaced several commercial materials due to their chemical inertness, better efficacy, and durability. The addition of certain electroactive fillers in the polymer matrix enhances the polar phase, which enhances the applicability of the hybrid for fuel cell and energy-harvesting applications. Poly(vinylidene fluoride) is one of the remarkable fluoropolymers in the field of energy applications such as fuel cell and piezoelectric energy harvesting. In the present review, a detailed discussion of the different kinds of nanofillers and their role in energy harvesting and fuel cell electrolyte membranes is projected.
Collapse
Affiliation(s)
- Om Prakash
- Kashi
Naresh Government PG College Gyanpur, Bhadohi 221304, India
| | - Shivam Tiwari
- School
of the Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Pralay Maiti
- School
of the Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
7
|
Xu TC, Wang CS, Hu ZY, Zheng JJ, Jiang SH, He SJ, Hou HQ. High Strength and Stable Proton Exchange Membrane Based on Perfluorosulfonic Acid/Polybenzimidazole. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2708-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zunita M, Hastuti R, Alamsyah A, Khoiruddin K, Wenten IG. Ionic Liquid Membrane for Carbon Capture and Separation. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2021.1920428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Zunita
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - R. Hastuti
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - A. Alamsyah
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - K. Khoiruddin
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - I. G. Wenten
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| |
Collapse
|
9
|
|
10
|
Guo M, Ban T, Wang Y, Wang Y, Zhang Y, Zhang J, Zhu X. Exploring highly soluble ether-free polybenzimidazole as anion exchange membranes with long term durability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Fellows AP, Puhan D, Wong JSS, Casford MTL, Davies PB. Probing the Nanoscale Heterogeneous Mixing in a High-Performance Polymer Blend. Polymers (Basel) 2022; 14:polym14010192. [PMID: 35012214 PMCID: PMC8747257 DOI: 10.3390/polym14010192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
The blend of polyetheretherketone (PEEK) and polybenzimidazole (PBI) produces a high-performance blend (PPB) that is a potential replacement material in several industries due to its high temperature stability and desirable tribological properties. Understanding the nanoscale structure and interface of the two domains of the blend is critical for elucidating the origin of these desirable properties. Whilst achieving the physical characterisation of the domain structures is relatively uncomplicated, the elucidation of structures at the interface presents a significant experimental challenge. In this work, we combine atomic force microscopy (AFM) with an IR laser (AFM-IR) and thermal cantilever probes (nanoTA) to gain insights into the chemical heterogeneity and extent of mixing within the blend structure for the first time. The AFM-IR and nanoTA measurements show that domains in the blend are compositionally different from those of the pure PEEK and PBI polymers, with significant variations observed in a transition region several microns wide in proximity to domain boundary. This strongly points to physical mixing of the two components on a molecular scale at the interface. The versatility intrinsic to the combined methodology employed in this work provides nano- and microscale chemical information that can be used to understand the link between properties of different length scales across a wide range of materials.
Collapse
Affiliation(s)
- Alexander Paul Fellows
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (A.P.F.); (M.T.L.C.); (P.B.D.)
| | - Debashis Puhan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (A.P.F.); (M.T.L.C.); (P.B.D.)
- Correspondence: (D.P.); (J.S.S.W.)
| | - Janet S. S. Wong
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Correspondence: (D.P.); (J.S.S.W.)
| | - Michael T. L. Casford
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (A.P.F.); (M.T.L.C.); (P.B.D.)
| | - Paul B. Davies
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (A.P.F.); (M.T.L.C.); (P.B.D.)
| |
Collapse
|
12
|
Kim EK, Jung J, Cho K, Yun GJ, Lee JC. Synthesis of polybenzimidazoles having improved processability by introducing two and three ether groups in a repeating unit. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Liu T, Huang H, Wang Y, Yu J, Hu Z. Super Strong and Tough Polybenzimidazole/Metal Ions Coordination Networks: Reinforcing Mechanism, Recyclability, and Anti-Counterfeiting Applications. Macromol Rapid Commun 2021; 43:e2100643. [PMID: 34755405 DOI: 10.1002/marc.202100643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Indexed: 11/06/2022]
Abstract
Nature has provided many delicate strategies for optimizing the structural characteristics of biological materials. One such strategy is the strengthening and toughening of matrix materials by aduandant and hierarchically arranged non-covalent crosslinking. However, efficient strengthening and toughening of high-performance aromatic polymers by non-covalent bonds has rarely been reported yet. Herein, we report the preparation and characterizations of a metal coordination bonds crosslinked polybenzimidazole (PBI) network. By optimizing the synthetic parameters, the strength of copper ion (Cu2+ ) crosslinked PBI is improved from 87.8 to 218.4 MPa, and the toughness is increased from 19.4 to 111.9 MJ m-3 , corresponding to increments of 148.7 % and 476.8 %, respectively, which surpass all previously reported non-covalent bonds crosslinked high-performance polymers. PBI with varied chain flexibility are then synthesized to deeply understand the stregnening and toughening mechanism. In addition, the glass transition temperature of PBI is dramatically increased by 75 °C after Cu2+ crosslinking. Moreover, the chemical recycling of PBI from crosslinekd network, and the development of a novel high-temperature resistant or high-temperature rewritable anti-counterfeiting films based on Cu2+ crosslinked PBI are also demonstrated. This study is expected to shed light on design principle for future supramolecularly crosslinked and recyclable high-performance polymers.
Collapse
Affiliation(s)
- Tianmeng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
14
|
A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14175440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
Collapse
|
15
|
Ghorai A, Roy S, Das S, Komber H, Ghangrekar MM, Voit B, Banerjee S. Preparation of Sulfonated Polytriazoles with a Phosphaphenanthrene Unit via Click Polymerization: Fabrication of Membranes and Properties Thereof. ACS APPLIED POLYMER MATERIALS 2021; 3:4127-4138. [DOI: 10.1021/acsapm.1c00600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse. 6, 01069 Dresden, Germany
| | | | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse. 6, 01069 Dresden, Germany
| | | |
Collapse
|
16
|
Abstract
As the world’s transportation is seeking to switch towards renewable and sustainable sources of energy, the research in fuel cell technology has gained momentum. Proton exchange membrane fuel cell (PEMFC) operating at temperature range 100–200°C (high-temperature proton exchange membrane fuel cells, HT-PEMFCs) has gained interest in their major application to electric power generation. The most promising material is polybenzimidazoles (PBI). Synthesis methods such as condensation polymerization, solid-state or melt polymerization, etc. give the polymer with different inherent viscosity. The monomer modifications both in tetramine and the diacid, reveal variations in glass transition value. Further insight into the membrane casting solvents and methods along with its proton conductivity has been reviewed. Review paper is comprising of Part 1: for the synthesis methods, structural changes, and applications of PBIs in HT-PEMFCs while, Part 2: for the various kinds of PBIs has been discussed.[Formula: see text]
Collapse
|
17
|
Constructing anhydrous proton exchange membranes through alternate depositing graphene oxide and chitosan on sulfonated poly(vinylidenefluoride) or sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) membranes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Chain end-termination of p-polybenzimidazole by bulk segment for efficient electrochemical power generation and hydrogen separation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Escorihuela J, Olvera-Mancilla J, Alexandrova L, del Castillo LF, Compañ V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers (Basel) 2020; 12:E1861. [PMID: 32825111 PMCID: PMC7564738 DOI: 10.3390/polym12091861] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jessica Olvera-Mancilla
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Larissa Alexandrova
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - L. Felipe del Castillo
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera. s/n, 46022 Valencia, Spain
| |
Collapse
|
20
|
Olvera-Mancilla J, Escorihuela J, Alexandrova L, Andrio A, García-Bernabé A, Del Castillo LF, Compañ V. Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. SOFT MATTER 2020; 16:7624-7635. [PMID: 32735001 DOI: 10.1039/d0sm00743a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)2] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)2] concentration in three different polymeric matrices based on the PBI structure, poly(2,2'-(m-phenylene)-5,5'-bibenzimidazole) (PBI-1), poly[2,2'-(p-oxydiphenylene)-5,5'-bibenzimidazole] (PBI-2) and poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) (PBI-3), have been investigated. The conductivity, diffusivity and mobility are greater in the composite membrane poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) containing fluorinated groups, reaching a maximum when the amount of H[COSANE] was 15%. In general, all the prepared membranes displayed excellent and tunable properties as conducting materials, with conductivities higher than 0.03 S cm-1 above 140 °C. From an analysis of electrode polarization (EP) the proton diffusion coefficients and mobility have been calculated.
Collapse
Affiliation(s)
- Jessica Olvera-Mancilla
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicente Andrés Estellés s/n, Burjassot 46100, Valencia, Spain.
| | - Larissa Alexandrova
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Andreu Andrio
- Departament de Física Aplicada, Universitat Jaume I, 12080, Castelló, Spain
| | - Abel García-Bernabé
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de Valencia, Campus de Vera s/n, 46022 Valencia, Spain.
| | - Luis Felipe Del Castillo
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de Valencia, Campus de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
21
|
Escorihuela J, García-Bernabé A, Compañ V. A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers (Basel) 2020; 12:E1374. [PMID: 32570990 PMCID: PMC7361977 DOI: 10.3390/polym12061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 11/18/2022] Open
Abstract
The use of phosphoric acid doped polybenzimidazole (PBI) membranes for fuel cell applications has been extensively studied in the past decades. In this article, we present a systematic study of the physicochemical properties and proton conductivity of PBI membranes doped with the commonly used phosphoric acid at different concentrations (0.1, 1, and 14 M), and with other alternative acids such as phytic acid (0.075 M) and phosphotungstic acid (HPW, 0.1 M). The use of these three acids was reflected in the formation of channels in the polymeric network as observed by cross-section SEM images. The acid doping enhanced proton conductivity of PBI membranes and, after doping, these conducting materials maintained their mechanical properties and thermal stability for their application as proton exchange membrane fuel cells, capable of operating at intermediate or high temperatures. Under doping with similar acidic concentrations, membranes with phytic acid displayed a superior conducting behavior when compared to doping with phosphoric acid or phosphotungstic acid.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Abel García-Bernabé
- Departamento de Termodinámica Aplicada, Escuela Técnica Superior de Ingeniería Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada, Escuela Técnica Superior de Ingeniería Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
22
|
Aradhyula BPR, Ranga Naidu Chinta RV, Dhanunjayarao K, Venkatasubbaiah K. Synthesis and characterization of poly(tetraphenylimidazole)s and their application in the detection of fluoride ions. RSC Adv 2020; 10:13149-13154. [PMID: 35492134 PMCID: PMC9051455 DOI: 10.1039/d0ra01559h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Here, we describe the synthesis and characterization of a silyl protected tetraphenylimidazole monomer and its homo and co-polymer. The requisite monomer was accessed by Suzuki–Miyaura cross-coupling of 2-(1-(4-bromophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol and 4-vinylphenylboronic acid followed by protection of the phenolic group by tert-butyl(chloro)diphenylsilane. The desired polymers were readily synthesized by using free radical polymerization. Both the polymers and monomer were characterized using different analytical techniques including multinuclear NMR, GPC (for polymers), and single crystal X-ray crystallography (for the monomer). By utilizing the greater fluorophilicity of the silyl atom, the polymers were studied as probes for the detection of fluoride ions. The selectivity and sensitivity of the synthesized polymers were investigated in detail. We describe the synthesis and characterization of a silyl protected tetraphenylimidazole monomer and its polymers. The polymers were studied as probes for the detection of fluoride ions. Both the probes showed high selectivity and sensitivity over other ions tested.![]()
Collapse
Affiliation(s)
- Basava Punna Rao Aradhyula
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Ramu V. Ranga Naidu Chinta
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Kunchala Dhanunjayarao
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| |
Collapse
|