1
|
Ye L, Chen Z, Xu X, Ma F, Fan K, Zong L, Wang L, Chen G, Li X, Zhan T. Ultrafast Room-Temperature Synthesis of Phosphate-Intercalated NiFe Layered Double Hydroxides for High-Performance Alkaline Seawater Oxidation. Inorg Chem 2024; 63:20859-20869. [PMID: 39393000 DOI: 10.1021/acs.inorgchem.4c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Quick and easy synthetic methods and highly efficient catalytic performance are equally important to anodic oxygen evolution reaction (OER) electrocatalysts for alkaline seawater electrolysis. Herein, we report a facile one-step route to in situ growing PO43- intercalated NiFe layered double hydroxides (NiFe-LDH) on Ni foam (denoted as NiFe-P/NF) by a room-temperature immersion for several minutes. This ultrafast approach transforms the NF surface into a rough PO43- intercalated NiFe-LDH overlayer, which demonstrates outstanding OER performance in both alkaline simulated and natural seawaters owing to good hydrophilic interface and the electrostatic repulsion of PO43- against Cl- anions. Density functional theory calculations reveal that the intercalated PO43- can not only promote electron transfer but also prevent Cl- from entering the interlayer and simultaneously inhibit the migration of Cl- over the NiFe-LDH surface. In alkaline simulated and natural seawater electrolytes, NiFe-P/NF needs low overpotentials of 248 and 298 mV to achieve a current density of 100 mA cm-2, respectively. NiFe-P/NF can stably run over 42 h in an alkaline high-salty electrolyte (1 M KOH + 2.5 M NaCl) at 250 mA cm-2, more than 70 times that of NiFe/NF (0.6 h), emphasizing the critical role of the intercalated PO43- anions on the excellent durability. This study offers a new strategy to modify commercial NF to prepare efficient and stable OER catalysts for seawater electrolysis.
Collapse
Affiliation(s)
- Lin Ye
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - ZhiPeng Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinyue Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fei Ma
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kaicai Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingbo Zong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guanjun Chen
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xingwei Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianrong Zhan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Chen H, Ma Y, Han Y, Mao X, Hu Y, Zhao X, Dong Q, Wen B, Du A, Wang X, Lyu X, Jia Y. Ligand and Strain Synergistic Effect in NiFeP 0.32 LDH for Triggering Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309689. [PMID: 38258384 DOI: 10.1002/smll.202309689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Developing efficient water-splitting electrocatalysts to accelerate the slow oxygen evolution reaction (OER) kinetics is urgently desired for hydrogen production. Herein, ultralow phosphorus (P)-doped NiFe LDH (NiFePx LDH) with mild compressive strain is synthesized as an efficient OER electrocatalyst. Remarkably, NiFePx LDH with the phosphorus mass ratio of 0.32 wt.% and compressive strain ratio of 2.53% (denoted as NiFeP0.32 LDH) exhibits extraordinary OER activity with an overpotential as low as 210 mV, which is superior to that of commercial IrO2 and other reported P-based OER electrocatalysts. Both experimental performance and density function theory (DFT) calculation demonstrate that the doping of P atoms can generate covalent Fe─P coordination bonds and lattice distortion, thus resulting in the consequent depletion of electrons around the Fe active center and the downward shift of the d-band center, which can lead to a weaker adsorption ability of *O intermediate to improve the catalytic performance of NiFeP0.32 LDH for OER. This work provides novel insights into the distinctive coordinated configuration of P in NiFePx LDH, which can result in superior catalytic performance for OER.
Collapse
Affiliation(s)
- Hao Chen
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering & Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology (ZJUT), Hangzhou, 310014, P. R. China
- Moganshan Institute ZJUT, Kangqian District, Deqing, 313200, P. R. China
| | - Yongbing Ma
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering & Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology (ZJUT), Hangzhou, 310014, P. R. China
- Moganshan Institute ZJUT, Kangqian District, Deqing, 313200, P. R. China
| | - Yun Han
- Queensland Micro- and Nanotechnology Centre, School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia
| | - Xin Mao
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia
| | - Yongbin Hu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Xin Zhao
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Qinglong Dong
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Bo Wen
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia
| | - Xin Wang
- Moganshan Institute ZJUT, Kangqian District, Deqing, 313200, P. R. China
- College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, 310014, P. R. China
| | - Xiao Lyu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Yi Jia
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering & Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology (ZJUT), Hangzhou, 310014, P. R. China
- Moganshan Institute ZJUT, Kangqian District, Deqing, 313200, P. R. China
| |
Collapse
|
3
|
Tayebi M, Masoumi Z, Seo B, Lim CS, Hong CH, Kim HJ, Kyung D, Kim HG. Production of H 2 and Glucaric Acid Using Electrocatalyst Glucose Oxidation by the Ta NiFe LDH Electrode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26107-26120. [PMID: 38725264 DOI: 10.1021/acsami.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The slow anodic oxygen evolution reaction (OER) significantly limits electrocatalytic water splitting for hydrogen production. We proposed the electrocatalyst for glucose oxidation by Ta-doping NiFe LDH nanosheets to simultaneously obtain glucaric acid (GRA) and hydrogen gas as a useful byproduct. Superior glucose oxidation reaction (GOR) activity is demonstrated by the optimized Ta-NiFe LDH, which has a low overpotential of 192 mV, allowing for a small Tafel slope of 70 mV dec-1 and a current density of 50 mA cm-2. The Ta NiFe LDH-oxidized glucose to GRA with a 72.94% yield and 64.3% Faradaic efficiency at 1.45 VRHE. Herein, we report the Ta NiFe LDH/NF electrode for the GOR&hydrogen evolution reaction (HER), which exhibits a cell voltage of 1.62 V to reach a current density of 10 mA cm-2, which is 250 mV lower compared to OER&HER (1.87 V). This study reveals that GOR is an energy-efficient and cost-effective method for producing H2 and valorizing biomass.
Collapse
Affiliation(s)
- Meysam Tayebi
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Zohreh Masoumi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Bongkuk Seo
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Choong-Sun Lim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Chae Hwan Hong
- Research & Development Division, Hyundai Motor Company, Uiwang 16082, Gyeonggi-do, Republic of Korea
| | - Hye Jin Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Daeseung Kyung
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Hyeon-Gook Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| |
Collapse
|
4
|
Munawar T, Fatima S, Batoo KM, Bashir A, Mukhtar F, Hussain S, Manzoor S, Ashiq MN, Khan SA, Koc M, Iqbal F. Synergistic effect of a bamboo-like Bi 2S 3 covered Sm 2O 3 nanocomposite (Bi 2S 3-Sm 2O 3) for enhanced alkaline OER. Phys Chem Chem Phys 2024; 26:2678-2691. [PMID: 38175550 DOI: 10.1039/d3cp05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The availability of hydrogen energy from water splitting through the electrocatalytic route is strongly dependent on the efficiency, durability, and cost of the electrocatalysts. Herein, a novel Bi2S3-covered Sm2O3 (Bi2S3-Sm2O3) nanocomposite electrocatalyst was developed by a hydrothermal route for the oxygen evolution reaction (OER). The electrochemical properties were studied in 1.00 mol KOH solution after coating the target material on the stainless-steel substrate (SS). Physical analysis via XRD, FTIR, IV, TEM/EDX, and XPS revealed that the Bi2S3-Sm2O3 composite possesses metallic surface states, thereby displaying unconventional electron dynamics and purity of phases. The Bi2S3-Sm2O3 composite shows outstanding OER activity with a low overpotential of 197 mV and a Tafel slope of 74 mV dec-1 at a 10 mA cm-2 current density as compared to pure Bi2S3 and Sm2O3. Meanwhile, the composite catalyst retains high stability even after 100 h of the chronoamperometry test. Thus, this work unveils a new avenue for the speedy flow of electrons, which is attributed to the synergetic effect between Bi2S3 and Sm2O3, as well as enriched interfacial defects, which exhibit greater oxygen adsorption capability with improved electronic assemblies in the active interfacial region. In addition, the introduced porous structure in core-shell Bi2S3-Sm2O3 provides extraordinary electrical properties. Thus, this article offers a realistic framework for electrochemical energy generation.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Saman Fatima
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Khalid Mujasam Batoo
- College of Science, King Saud University, P.O. Box-2455, Riyadh-11451, Saudi Arabia
| | - Ambreen Bashir
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul-05006, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul-05006, Republic of Korea
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shoukat Alim Khan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muammer Koc
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
5
|
He Y, Feng M, Zhang X, Huang Y. Metal-organic framework (MOF)-derived flower-like Ni-MOF@NiV-layered double hydroxides as peroxidase mimetics for colorimetric detection of hydroquinone. Anal Chim Acta 2023; 1283:341959. [PMID: 37977784 DOI: 10.1016/j.aca.2023.341959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Nanozymes are one of the ideal substitutes for natural enzymes because of their excellent chemical stability and simple preparation methods. However, due to the limited catalytic ability of most reported nanozymes, constructing nanomaterials with low cost and high activity is gradually becoming an exploration focus in the field of nanozymes. Heteroatom doping of metal-organic frameworks is one of potential approaches to design nanozymes with high catalytic performance. Due to their multiple valence states properties, V-doped metal-organic framework (MOF)-derived LDH is expected to be a good enzyme-like catalyst. To our knowledge, the V-doped MOF-derived LDH as nanozyme is not explored before. RESULTS We report the in-situ synthesis of NiV-layered double hydroxides (LDHs) on nickel-based MOF, i.e. Ni-MOF@NiV-LDHs. The MOF surface is covered by 2D nanosheets. This unique structural design increases the specific surface area of the material, enables more exposure of catalytic active sites to participate in reactions and accelerates the electron transfer rate. The Ni-MOF@NiV-LDHs have high peroxidase-like activity able to catalyze TMB oxidation by H2O2 via the generation of •OH and O2•-. Relative to Ni-MOF, the Ni-MOF@NiV-LDHs shows 47-fold peroxidase-like activity rise. It had good affinity to TMB and H2O2, with the Michaelis-Menten constants of 0.12 mM and 0.007 mM, respectively. The hydroquinone (HQ) consumed the reactive oxygen species generated in the TMB + H2O2+Ni-MOF@NiV-LDHs system to inhibit the TMB oxidation. On this basis, a sensitive and rapid assay for determining HQ was developed, with a linear range of 0.50-70 μM and a LOD of 0.37 μM. SIGNIFICANCE This work provided some clues for the further development of novel nanozymes with high catalytic performance via a strategy of heteroatom doping. And the constructed colorimetric analysis method was successfully utilized for the determination of HQ in actual waters, which has the potential for practical application in the analysis of environmental pollutants.
Collapse
Affiliation(s)
- Yin He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Min Feng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Zhang D, Cheng H, Hao X, Sun Q, Zhang T, Xu X, Ma Z, Yang T, Ding J, Liu X, Yang M, Huang X. Stable Seawater Oxidation at High-Salinity Conditions Promoted by Low Iron-Doped Non-Noble-Metal Electrocatalysts. ACS Catal 2023; 13:15581-15590. [DOI: 10.1021/acscatal.3c03528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Dina Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Hao Cheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 000000, China
| | - Xiaoyu Hao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Qian Sun
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Tianyi Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Xinwu Xu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Zelin Ma
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 000000, China
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xuqing Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 000000, China
- Research Centre on Data Sciences & Artificial Intelligence, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 000000, China
| | - Xiaolei Huang
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
7
|
Chen Z, Fan Q, Huang M, Cölfen H. The Structure, Preparation, Characterization, and Intercalation Mechanism of Layered Hydroxides Intercalated with Guest Anions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300509. [PMID: 37271930 DOI: 10.1002/smll.202300509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Indexed: 06/06/2023]
Abstract
Since the intercalation of anions into layered hydroxides (LHs) has a great impact not only on their nucleation and growth but also on their structure, composition, and size, the intercalation chemistry of LHs has aroused the strong interest of researchers. However, the progress in the fundamental understanding of LHs intercalated with guest anions have not been paralleled by a concomitant development of the preparation and performance improvement of such materials. Considering the guidance of a timely in-depth review for scientists in this area, a systematic introduction about the development that is made on the above-mentioned issues is highly needed but yet missing so far. Herein, recent advances in understanding the chemical composition and structure of LHs intercalated with guest anions are systematically summarized. Meanwhile, typical and emerging bottom-up synthesis methods of LHs intercalated with anions are reviewed, and the potential impact of external reaction parameters on the intercalation of anions into LHs are discussed . Besides, different analytical characterization techniques employed in the examination of guest anion-intercalated LHs are deliberated upon. Finally, although progress is slow in exploring the intercalation mechanism, as many examples as possible are included in this review and inferred the possible intercalation mechanism.
Collapse
Affiliation(s)
- Zongkun Chen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Qiqi Fan
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| |
Collapse
|
8
|
Chowdhury MF, Kim CM, Jang A. High-efficient and rapid removal of anionic and cationic dyes using a facile synthesized sole adsorbent NiAlFe-layered triple hydroxide (LTH). CHEMOSPHERE 2023; 332:138878. [PMID: 37172625 DOI: 10.1016/j.chemosphere.2023.138878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
It would be extremely momentous to familiarize a low-cost sole adsorbent NiAlFe-layered triple hydroxides (LTHs) having a strong sorption affinity towards both anionic and cationic dyes. Using the urea hydrolysis hydrothermal method LTHs were fabricated and by altering the ratio of participant metal cations the adsorbent was optimized. BET analysis revealed that the optimized LTHs possess an elevated surface area (160.04 m2/g) while TEM and FESEM analysis portrayed the stacked sheets-like 2D morphology. LTHs were employed for the amputation of anionic congo red (CR) and cationic brilliant green (BG) dye. The adsorption study showed that within 20 and 60 min, respectively, maximum adsorption capacities were achieved at 57.47 mg/g and 192.30 mg/g for CR and BG dye. Adsorption isotherm, kinetics, and thermodynamics study revealed that both chemisorptions with physisorptions were the assertive factor for the dye encapsulation. This enhanced adsorption performance of the optimized LTH for the anionic dye is attributed to its inherent anions exchange properties and new bond formation with the adsorbent skeleton. Whereas for the cationic dye, it was because of the formation of strong hydrogen bonds, and electrostatic interaction. Morphological manipulation of LTHs, formulates the optimized adsorbent LTH111, provokes the adsorbent for this elevated adsorption performance. Overall, this study revealed that LTHs have a high potential for the effectual remediation of dyes from wastewater as a sole adsorbent at a low cost.
Collapse
Affiliation(s)
- Mir Ferdous Chowdhury
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Chang-Min Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
9
|
Shahparast S, Asadpour-Zeynali K. α-MnO 2/FeCo-LDH on Nickel Foam as an Efficient Electrocatalyst for Water Oxidation. ACS OMEGA 2023; 8:1702-1709. [PMID: 36643503 PMCID: PMC9835177 DOI: 10.1021/acsomega.2c07580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The ever-expanding human societies on the one hand and the diminishing fossil fuel resources on the other have driven man to find a suitable, cheap, clean, and accessible source of energy. Water splitting is a good solution to this crisis. Because of the slow kinetics of water oxidation reaction, it is important to select efficient and durable electrocatalysts to improve the reaction kinetics. In this research, α-MnO2/FeCo-LDH catalysts on nickel foam were developed for water oxidation, which exhibited good catalytic performance and stability in a 0.1 M KOH solution. The electrocatalysts were synthesized by hydrothermal methods and characterized by XRD, FTIR, Raman, SEM, TEM, EDS, and MAP techniques. The proposed modified electrode has large exchange current, low overpotential, and small Tafel slope. Here, only an overpotential of 210 mV is required to achieve a current density of 5 mA cm2 with a Tafel slope of 70.4 mV dec-1 in an alkaline solution.
Collapse
Affiliation(s)
- Saeedeh Shahparast
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz5166616471, Iran
| | - Karim Asadpour-Zeynali
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz5166616471, Iran
- Pharmaceutical
Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz51664, Iran
| |
Collapse
|
10
|
Li J, Du X, Luo Y, Han B, Liu G, Li J. MoS2/NiVFe crystalline/amorphous heterostructure induced electronic modulation for efficient neutral-alkaline hydrogen evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Wang Z, Wang C, Ye L, Liu X, Xin L, Yang Y, Wang L, Hou W, Wen Y, Zhan T. MnO x Film-Coated NiFe-LDH Nanosheets on Ni Foam as Selective Oxygen Evolution Electrocatalysts for Alkaline Seawater Oxidation. Inorg Chem 2022; 61:15256-15265. [PMID: 36083871 DOI: 10.1021/acs.inorgchem.2c02579] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to freshwater electrolysis, seawater electrolysis to produce hydrogen is preferable and more promising, but this technology is plagued by the electrode's corrosion and oxidative reactions of the competitive Cl- ion on the anode. To develop efficient oxygen evolution reaction (OER) catalysts for seawater electrolysis, the ultrathin MnOx film-covered NiFe-layered double-hydroxide nanosheet array is directly assembled on Ni foam (MnOx/NiFe-LDH/NF) by hydrothermal and electrodeposition in turn. This catalyst demonstrates excellent OER-selective activity in alkaline saline electrolytes. In 1 M KOH/0.5 M NaCl and 1 M KOH/seawater electrolytes, MnOx/NiFe-LDH/NF exhibits lower overpotentials at 100 mA cm-2 (η100 values of 265 and 276 mV, respectively) and Tafel slopes (73 and 77 mV decade-1, respectively) than does the NiFe-LDH/NF electrode (η100 values of 298 and 327 mV and Tafel slopes of 91 and 140 mV decade-1, respectively). In alkaline saline solutions, the stability and durability of the former are also better than those of the latter. The good OER selectivity and catalytic performance are attributed to the MnOx overlayer that selectively blocks Cl- anions from approaching catalytic centers, and the good conductivity, fast kinetics, more oxygen vacancies, and abundant active sites of MnOx/NiFe-LDH/NF. The robust stability is due to the enhanced resistance for Cl- corrosion stemming from the MnOx protective film. Hence, MnOx/NiFe-LDH/NF can act as a promising OER electrocatalyst for alkalized natural seawater electrolysis.
Collapse
Affiliation(s)
- Zekun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xien Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liantao Xin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuanyuan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Yonghong Wen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
12
|
Chen L, Deng R, Guo S, Yu Z, Yao H, Wu Z, Shi K, Li H, Ma S. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Deng Y, Lu Y, Dai R, Xiang M, Zhang Z, Zhang X, Zhou Q, Gu H, Bai J. Designing hierarchical iron doped nickel-vanadium hydroxide microsphere as an efficient electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2022; 627:215-223. [PMID: 35849855 DOI: 10.1016/j.jcis.2022.07.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 12/31/2022]
Abstract
Exploring highly active and inexpensive electrocatalysts for oxygen evolution reaction (OER) is considered to be one of the preconditions for the development of energy and environment-related technologies. Nickel-based layered double hydroxides (LDHs) are extensively-studied OER electrocatalysts, but they still require relatively high overpotentials to achieve threshold current densities. In this work, iron-doped nickel-vanadium hydroxide microspheres (Fe-doped NiV HMS) were synthesized by doping iron ions into the NiV HMS through a facile cation-exchange method. The Fe-doped NiV HMS are hollow hierarchical structure stacked by high-density perpendicularly-lying nanosheets, which provide enough space for electrolyte penetration and diffusion. Owing to optimized composition and hollow hierarchical structure, the Fe-doped NiV HMS exhibits excellent electrocatalytic performance, which possessed a very low running overpotential (255 mV at 10 mA cm-2) and a smallest Tafel slope (56 mV dec-1) compared with hierarchical NiV HMS toward OER. Electrochemical results and density functional theory (DFT) manifest that Fe doping could regulate the electronic structure of NiV HMS, thus improving its electrical conductivity and electron transfer rate, and thus enhancing its catalytic activity. This research provides a convenient way to prepare Ni-based hydroxides as promising OER catalysts.
Collapse
Affiliation(s)
- Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Yidong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Rentong Dai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China.
| | - Zhenwei Zhang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xiaoli Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Quanfa Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China.
| |
Collapse
|
14
|
Zhou G, Gao X, Wen S, Wu X, Zhang L, Wang T, Zhao P, Yin J, Zhu W. Magnesium-regulated oxygen vacancies of cobalt-nickel layered double hydroxide nanosheets for ultrahigh performance asymmetric supercapacitors. J Colloid Interface Sci 2022; 612:772-781. [PMID: 35032928 DOI: 10.1016/j.jcis.2021.12.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Rational design of layered double hydroxide (LDH) electrodes is of great significance for high-performance supercapacitors (SCs). Herein, ultrathin cobalt-nickel-magnesium layered double hydroxide (CoNiMg-LDH) nanosheets with plentiful oxygen vacancies are synthesized via sacrificial magnesium-based replacement reaction at room temperature. Self-doping and mild reduction of magnesium can significantly increase the concentration of oxygen vacancies in CoNiMg-LDH, which promotes the electrochemical charge transfer efficiency and enhances the adsorption ability of electrolytes. Density functional theory (DFT) calculations also indicate that Mg2+ doping can decrease the formation energy of oxygen vacancies in CoNiMg-LDH nanosheets, which increases the concentration of oxygen vacancies. Thus, the assembled asymmetric supercapacitor CoNiMg-LDH//Actived Carbon accomplishes a superior capacity of ∼ 333 C g-1 (208 F g-1) at 1 A g-1 and presents a gravimetric energy density of 73.9 Wh kg-1 at 0.8 kW kg-1. It presents only 13% capacity loss at 20 A g-1 after 5000 cycles. This discovery emphasizes the positive role of magnesium in regulating oxygen vacancies to improve the performance of supercapacitors, which should be beneficial for extending the scope of superior SCs active materials.
Collapse
Affiliation(s)
- Guolang Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaoliang Gao
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China
| | - Shizheng Wen
- School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China
| | - Xinglong Wu
- School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Lili Zhang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China.
| | - Tianshi Wang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China
| | - Pusu Zhao
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China
| | - Jingzhou Yin
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China.
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
15
|
Chavan HS, Lee CH, Inamdar AI, Han J, Park S, Cho S, Shreshta NK, Lee SU, Hou B, Im H, Kim H. Designing and Tuning the Electronic Structure of Nickel–Vanadium Layered Double Hydroxides for Highly Efficient Oxygen Evolution Electrocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05813] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Harish S. Chavan
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Chi Ho Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan 15588, South Korea
| | - Akbar I. Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Jonghoon Han
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
- Quantum-functional Research Centre, Dongguk University, Seoul 04620, South Korea
| | - Sunjung Park
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
- Quantum-functional Research Centre, Dongguk University, Seoul 04620, South Korea
| | - Sangeun Cho
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Nabeen K. Shreshta
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan 15588, South Korea
| | - Bo Hou
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Hyungsang Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| |
Collapse
|
16
|
Shi M, Sun X, Bai Q, Zhang Y, Yu S, Liu M, Wang L, Yu WW, Sui N. Graphdiyne/graphene heterostructure supported NiFe layered double hydroxides for oxygen evolution reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Bera K, Karmakar A, Kumaravel S, Sam Sankar S, Madhu R, N Dhandapani H, Nagappan S, Kundu S. Vanadium-Doped Nickel Cobalt Layered Double Hydroxide: A High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline Medium. Inorg Chem 2022; 61:4502-4512. [PMID: 35230844 DOI: 10.1021/acs.inorgchem.2c00093] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vast attention from researchers is being given to the development of suitable oxygen evolution reaction (OER) electrocatalysts via water electrolysis. Being highly abundant, the use of transition-metal-based OER catalysts has been attractive more recently. Among the various transition-metal-based electrocatalysts, the use of layered double hydroxides (LDHs) has gained special attention from researchers owing to their high stability under OER conditions. In this work, we have reported the synthesis of trimetallic NiCoV-LDH via a simple wet-chemical method. The synthesized NiCoV-LDH possesses aggregated sheet-like structures and is screened for OER studies in alkaline medium. In the study of OER activity, the as-prepared catalyst demanded 280 mV overpotential and this was 42 mV less than the overpotential essential for pristine NiCo-LDH. Moreover, doping of a third metal into the NiCo-LDH system might lead to an increase in TOF values by almost three times. Apart from this, the electronic structural evaluation confirms that the doping of V3+ into NiCo-LDH could synergistically favor the electron transfer among the metal ions, which in turn increases the activity of the prepared catalyst toward the OER.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
18
|
Bera K, Karmakar A, Karthick K, Sankar SS, Kumaravel S, Madhu R, Kundu S. Enhancement of the OER Kinetics of the Less-Explored α-MnO 2 via Nickel Doping Approaches in Alkaline Medium. Inorg Chem 2021; 60:19429-19439. [PMID: 34821497 DOI: 10.1021/acs.inorgchem.1c03236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of a low-cost transition metal-based catalyst for water splitting is of prime importance for generating green hydrogen on an industrial scale. Recently, various transition metal-based oxides, hydroxides, sulfides, and other chalcogenide-based materials have been synthesized for developing a suitable anode material for the oxygen evolution reaction (OER). Among the various transition metal-based catalysts, their oxides have received much consideration for OER, especially in lower pH condition, and MnO2 is one of the oxides that have widely been used for the same. The large variation in the structural disorder of MnO2 and internal resistance at the electrode-electrolyte interfaces have limited its large-scale application. By considering the above limitations of MnO2, here in this work, we have designed Ni-doped MnO2 via a simple wet-chemical synthetic route, which has been successfully applied for OER application in 0.1 M KOH solution. Doping of various quantities of Ni into the MnO2 lattices improved the OER properties, and for achieving 10 mA/cm2 current density, the Ni-doped MnO2 containing 0.02 M of Ni2+ ions (coined as MnO2-Ni0.002(M)) demands only 445 mV overpotential, whereas the bare MnO2 required 610 mV overpotential. It has been proposed that the incorporation of nickel ions into the MnO2 lattices leads to an electron transfer from the Ni3+ ions to Mn4+, which in turn facilitates the Jahn-Teller distortion in the Mn-O octahedral unit. This electron transfer and the creation of a structural disorder in the Mn sites result in the improvization of the OER properties of the MnO2 materials.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
19
|
Shao W, Xiao M, Yang C, Cheng M, Cao S, He C, Zhou M, Ma T, Cheng C, Li S. Assembling and Regulating of Transition Metal-Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. SMALL 2021; 18:e2105763. [PMID: 34866325 DOI: 10.1002/smll.202105763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Developing efficient, durable, and low-cost earth-abundant elements-based oxygen evolution reaction (OER) catalysts by rapid and scalable strategies is of great importance for future sustainable electrochemical hydrogen production. The earth-abundant high-valency metals, especially vanadium, can modulate the electronic structure of 3d metal oxides and oxyhydroxides and offer the active sites near-optimal adsorption energies for OER intermediates. Here, the authors propose a facile assembling and regulating strategy to controllably synthesize a serial of transition metal (CoFe, NiFe, and NiCo)-based vanadates for efficient OER catalysis. By tuning the reaction concentrations, NiFe-based vanadates with different crystallinities can be facilely regulated, where the catalyst with moderate heterophase (mixed crystalline and amorphous structures) shows the best OER catalytic activity in terms of low overpotential (267 mV at the current density of 10 mA cm-2 ), low Tafel slope (38 mV per decade), and excellent long-term durability in alkaline electrolyte, exceeding its noble metal-based counterparts (RuO2 ) and most current existing OER catalysts. This work not only reports a facile and controllable method to synthesize a series of vanadates-based catalysts with heterophase nanostructures for high-performance OER catalysis, but also may expand the scope of designing cost-effective transition metal-based electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingjun Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Menghao Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
20
|
Jiang K, Liu W, Lai W, Wang M, Li Q, Wang Z, Yuan J, Deng Y, Bao J, Ji H. NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting. Inorg Chem 2021; 60:17371-17378. [PMID: 34705457 DOI: 10.1021/acs.inorgchem.1c02903] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrolysis of seawater can not only desalinate seawater but also produce high-purity hydrogen. Nevertheless, the presence of chloride ions in seawater will cause electrode corrosion and also undergo a chlorine oxidation reaction (ClOR) that competes with the oxygen evolution reaction (OER). Therefore, highly efficient and long-term stable electrocatalysts are needed in this field. In this work, an advanced bifunctional electrocatalyst based on NiFe layered double hydroxide (LDH)/FeOOH heterostructure nanosheets (NiFe LDH/FeOOH) was synthesized on nickel-iron foam (INF) via a simple electrodeposition method. The NiFe LDH/FeOOH electrode demonstrates excellent electrocatalytic activity and stability, which results from the strong interaction between FeOOH and NiFe LDH. Furthermore, ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman spectroscopy revealed the catalytic process and also demonstrated that the NiFe LDH/FeOOH heterostructure could facilitate the formation of active NiOOH species in the reaction. The obtained NiFe LDH/FeOOH catalyst displays low overpotentials of 181.8 mV at 10 mA·cm-2 for hydrogen evolution reaction (HER) and 286.2 mV at 100 mA·cm-2 for OER in the 1.0 M KOH + 0.5 M NaCl electrolyte. Furthermore, it also exhibits a low voltage of 1.55 V to achieve the current density of 10 mA·cm-2 and works steadily for 105 h at 100 mA·cm-2 for overall alkaline simulated seawater splitting. This work will afford a valid strategy for designing a non-noble metal catalyst for seawater splitting.
Collapse
Affiliation(s)
- Kun Jiang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Wenjun Liu
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Wei Lai
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Menglian Wang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Qian Li
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Zhaolong Wang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Junjie Yuan
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Yilin Deng
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Jian Bao
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
21
|
Nejati K, Jafari Foruzin L, Rezvani Z. Fast microwave-assisted preparation of nickel-copper-chromium-layered double hydroxide as an excellent electrocatalyst for water oxidation. Dalton Trans 2021; 50:7223-7228. [PMID: 33913451 DOI: 10.1039/d1dt01144h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a simple microwave method for the doping of Cu2+ into NiCr-LDH and the preparation of ternary Ni2.25Cu0.75Cr-LDH as a superior electrocatalyst for water oxidation in a neutral solution. The obtained Ni2.25Cu0.75Cr-LDH was characterized by XRD, DRS, TEM and FE-SEM techniques. The results showed that Ni2.25Cu0.75Cr-LDH was formed with a size of 30 nm. In order to examine the water oxidation activity of Ni2.25Cu0.75Cr-LDH, the as-prepared samples were used as an electrocatalyst-modified carbon paste electrode in neutral solution. The electrochemical results revealed that the optimized Ni2.25Cu0.75Cr-LDH presented extraordinary water oxidation activity with a low onset potential of 1.40 V (vs. RHE) and an overpotential of 170 mV compared to other molar ratios (Ni2.5Cu0. 5Cr-LDH), (Ni2CuCr-LDH), and bimetallic (CuCr-LDH), and even outperformed NiCr-LDH. Also, a small Tafel slope of 31 mV and high durability of 14 h could be obtained for Ni2.25Cu0.75Cr-LDH. The excellent OER could be assigned to the decreased band gap energy and increased charge transfer at Ni2.25Cu0.75Cr-LDH. Therefore, Ni2.25Cu0.75Cr-LDH is a promising water oxidation catalyst owing to its improved charge transfer ability.
Collapse
Affiliation(s)
- Kamellia Nejati
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Leila Jafari Foruzin
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Zolfaghar Rezvani
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
22
|
Rajendiran R, Chinnadurai D, Chen K, Selvaraj AR, Prabakar K, Li OL. Electrodeposited Trimetallic NiFeW Hydroxide Electrocatalysts for Efficient Water Oxidation. CHEMSUSCHEM 2021; 14:1324-1335. [PMID: 33381900 DOI: 10.1002/cssc.202002544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Tungsten-doped Ni-Fe hydroxides fabricated on a three-dimensional nickel foam through cathodic electrodeposition are proposed as effective oxygen evolution reaction (OER) catalysts for alkaline water oxidation. Incorporating an adequate amount of W into Ni-Fe hydroxides modulates the electronic structure by changing the local environment of Ni and Fe and create oxygen vacancies, resulting in abundant active sites for the OER. The optimized electrocatalyst, with a substantial number of catalytic sites, is found to outperform the well-established 20 wt% Ir/C electrocatalyst. The catalyst only requires small overpotentials of 224 mV and 251 mV to generate current densities of 10 mA cm-2 and 50 mA cm-2 , respectively, at an extremely low Tafel slope. Surface study after long-term chronopotentiometry (ca. 30 h) reveals that the tungsten dopant undergoes reduction to stabilize the Ni and Fe active sites for predominant water oxidation. This research provides new insight to apply optimum amounts of tungsten doping to enable more significant electronic coupling within Ni-Fe for the chemisorption of hydroxy and oxygen intermediates and greatly improved OER activity.
Collapse
Affiliation(s)
- Rajmohan Rajendiran
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Materials Technology Institute, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Deviprasath Chinnadurai
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Kai Chen
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Aravindha Raja Selvaraj
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Oi Lun Li
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
23
|
Vo TG, Chang KF, Chiang CY. Valence modulation on zinc-cobalt-vanadium layered double hydroxide nanosheet for accelerating BiVO4 photoelectrochemical water oxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Tang S, Li X, Courté M, Peng J, Fichou D. Hierarchical Cu(OH)
2
@Co(OH)
2
Nanotrees for Water Oxidation Electrolysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shasha Tang
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 ingapore
| | - Xiaogang Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Link Singapore 637459 Singapore
| | - Marc Courté
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 ingapore
| | - Jingjing Peng
- Beijing Institute of Aeronautical Materials Beijing 100095 P. R. China
| | - Denis Fichou
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 ingapore
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu F-75005 Paris France
| |
Collapse
|
25
|
Tang S, Li X, Courté M, Peng J, Fichou D. Interconnected porous nanoflakes of CoMo2S4 as an efficient bifunctional electrocatalyst for overall water electrolysis. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00318b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interconnected porous nanoflakes of the bimetallic CoMo2S4 are synthesized and investigated as bifunctional catalysts for highly efficient overall water electrolysis.
Collapse
Affiliation(s)
- Shasha Tang
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Xiaogang Li
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Marc Courté
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Jingjing Peng
- Beijing Institute of Aeronautical Materials
- Beijing
- P. R. China
| | - Denis Fichou
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
- Sorbonne Université
- CNRS
| |
Collapse
|
26
|
Zhao J, Wang XR, Chen FW, He C, Wang XJ, Li YP, Liu RH, Chen XM, Hao YJ, Yang M, Li FT. A one-step synthesis of hierarchical porous CoFe-layered double hydroxide nanosheets with optimized composition for enhanced oxygen evolution electrocatalysis. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01394f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hierarchical porous CoFe-LDHs composed of ultrathin nanosheets were prepared via a simple one-step precipitation process and exhibit excellent electrocatalytic activity and outstanding durability for OER in alkaline media.
Collapse
|
27
|
Gonçalves JM, Martins PR, Angnes L, Araki K. Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj00021c] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent advances in ternary layered double hydroxide electrocatalysts, including the strategies used for the design, synthesis, and evaluation of their performance for oxygen evolution reaction are reviewed in this account.
Collapse
Affiliation(s)
- Josué M. Gonçalves
- Department of Fundamental Chemistry
- Institute of Chemistry
- University of Sao Paulo
- Sao Paulo
- Brazil
| | | | - Lucio Angnes
- Department of Fundamental Chemistry
- Institute of Chemistry
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry
- Institute of Chemistry
- University of Sao Paulo
- Sao Paulo
- Brazil
| |
Collapse
|