1
|
Xu K, Zheng L, Bao SS, Ma J, Xie X, Zheng LM. Lanthanide-Sensitized Upconversion Iridium Complex via Triplet Energy Transfer. SMALL METHODS 2025; 9:e2400671. [PMID: 38803310 DOI: 10.1002/smtd.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Cyclometalated iridium (Ir) complexes demonstrate impressive capabilities across a range of fields, including biology and photocatalysis, due to their tunable optical characteristics and structure flexibility. However, generating upconversion luminescence of Ir complexes under near-infrared light excitation is challenging. Herein, by employing lanthanide-doped upconversion nanoparticles (UCNPs) as the sensitizer, a new strategy is demonstrated to gain upconversion luminescence of Ir complexes via triplet energy transfer. This design relies on a rationally designed hybrid of core-shell structured NaYbF4:Tb@NaTbF4 UCNPs and new Ir phosphonate complexes, in which UCNPs can migrate upconverted energy to the surface of nanoparticles through Tb3+-mediated energy migration and then sensitize the upconversion luminescence of Ir complexes upon 980 nm excitation. Both experimental and theoretical investigations highlight the significance of triplet energy transfer from excited Tb3+ ions to the triplet state of Ir complexes in the sensitization of upconversion luminescence of Ir complexes. These findings may open exciting avenues for fabricating hybrid Ir materials with new functions and driving the development of UCNP-based nanomaterials.
Collapse
Affiliation(s)
- Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Lifeng Zheng
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoji Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Selikhov AN, Félix G, Lyubov DM, Nelyubina YV, Cherkasov AV, Sene S, Taydakov IV, Metlin MT, Tyutyunov AA, Guari Y, Larionova J, Trifonov AA. Luminescent Er 3+ based single molecule magnets with fluorinated alkoxide or aryloxide ligands. Dalton Trans 2024; 53:6352-6366. [PMID: 38488577 DOI: 10.1039/d3dt04375d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We report the synthesis, structures, and magnetic and luminescence properties of a series of new mono- and dinuclear Er3+ complexes derived from sterically demanding aryloxide and fluorinated alkoxide ligands: [4-tBu-2,6-(Ph2CH)2C6H2O]3Er(THF) (1), [(C6F5)3CO]3Er(Me3SiOH) (2), [(C6F5)3CO]3Er[(Me3Si)2NH] (3), [(C6F5)3CO]3Er(C6H5CH3) (4), [(C6F5)3CO]3Er(o-Me2NC6H4CH3) (5) and {[Ph(CF3)2CO]2Er(μ2-OC(CF3)2Ph)}2 (6). In compounds 1, 2, and 4, the Er3+ ion is four-coordinated and adopts a distorted trigonal pyramidal geometry, while in 3, 5, and 6, the coordination geometry of Er3+ is impacted by the presence of several relatively short Er⋯F distances, making them rather 6-coordinated. All compounds behave as field-induced Single Molecule Magnets (SMMs) and exhibit an Er3+ characteristic near infrared (NIR) emission associated with the 4I13/2 → 4I15/2 transition with a remarkably long lifetime going up to 73 μs, which makes them multifunctional luminescent SMMs. The deconvolution of the NIR emission spectra allowed us to provide a direct probe of the crystal field splitting in these compounds, which was correlated with magnetic data.
Collapse
Affiliation(s)
- Alexander N Selikhov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| | - Gautier Félix
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Dmitry M Lyubov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| | - Saad Sene
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Ilya V Taydakov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991, Moscow, Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Mikhail T Metlin
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991, Moscow, Russia
| | - Andrey A Tyutyunov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Alexander A Trifonov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Gou X, Wu Y, Wang M, Liu N, Lan W, Zhang YQ, Shi W, Cheng P. The influence of light on the field-induced magnetization dynamics of two Er(III) coordination polymers with different halogen substituents. Dalton Trans 2023; 53:148-152. [PMID: 38018387 DOI: 10.1039/d3dt02714g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Photocontrolled magnetic properties are fundamental for the applications of molecular magnets, which have the features of high time and space resolution; however, such magnetic properties are highly challenging to be achieved owing to the weak light-matter interactions. Herein, the influence of in situ light irradiation on the field-induced magnetization dynamics of two Er(III) coordination polymers 1 and 2 with the same coordination skeletons but different halogen substituents was studied. 1 and 2, and their in situ photoexcited products 1a and 2a, display field-induced magnetization dynamics based on Orbach and/or Raman processes. The magnetization dynamics are fine-modulated by the synergetic effect of light irradiation and a ligand substituent, due to the charge re-distribution of the excited states of the ligand.
Collapse
Affiliation(s)
- Xiaoshuang Gou
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuewei Wu
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengmeng Wang
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ning Liu
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenlong Lan
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yi-Quan Zhang
- School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wei Shi
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Gavrikov AV, Ilyukhin AB, Taydakov IV, Metlin MT, Datskevich NP, Buzoverov ME, Babeshkin KA, Efimov NN. Novel stable ytterbium acetylacetonate-quinaldinate complexes as single-molecule magnets and surprisingly efficient luminophores. Dalton Trans 2023; 52:17911-17927. [PMID: 37982138 DOI: 10.1039/d3dt03253a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The first Yb complexes comprising a quinoline-2-carboxylate (quinaldinate, Q-) ligand, namely 1D-polymeric [Yb(acac)2(Q)]n (1, acac- is the acetylacetonate (pentane-2,4-dionate) anion) and mononuclear [Yb(acac)2(Q)(Phen)] (2, Phen is 1,10-phenanthroline), are reported. The bifunctionality of both complexes as field-induced single-molecule magnets (SMMs) and near IR luminophores has been revealed. The SMM properties of 1 and 2 have been discussed in terms of the geometry and composition of the coordination environment. Also, 1 is the first example of 1D-polymeric SMMs with the capped octahedral surrounding of Yb3+. The photoluminescence quantum yields (PLQYs) of 1 and 2 are 2 and 4%, respectively. The origins of this difference are discussed. Surprisingly, the PLQY value of 2 is high for compounds comprising a lot of C-H vibrational quenchers, being the highest one for reliably characterized Yb β-diketonate complexes, and surpassing those for complexes with a broad range of anionic ligands. In this respect, the role of the Phen ligand is to tune the coordination mode of Q- thereby decreasing the energy of coordinating C-O oscillators rather than to act as a typical antenna ligand. These results can give rise to an alternative route to elaborate efficient Yb-based luminophores via the substitution of the β-diketonate ligands controlled by the introduction of appropriate neutral ligands.
Collapse
Affiliation(s)
- Andrey V Gavrikov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Andrey B Ilyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Ilya V Taydakov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prospect, 119991, Moscow, Russian Federation
| | - Mikhail T Metlin
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prospect, 119991, Moscow, Russian Federation
- N.E. Bauman Moscow State Technical University, 2-ya Baumanskaya str. 5/1, 105005, Moscow, Russia
| | - Nikolay P Datskevich
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prospect, 119991, Moscow, Russian Federation
| | - Mikhail E Buzoverov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Konstantin A Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Nikolay N Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| |
Collapse
|
6
|
Dhbaibi K, Grasser M, Douib H, Dorcet V, Cador O, Vanthuyne N, Riobé F, Maury O, Guy S, Bensalah‐Ledoux A, Baguenard B, Rikken GLJA, Train C, Le Guennic B, Atzori M, Pointillart F, Crassous J. Multifunctional Helicene-Based Ytterbium Coordination Polymer Displaying Circularly Polarized Luminescence, Slow Magnetic Relaxation and Room Temperature Magneto-Chiral Dichroism. Angew Chem Int Ed Engl 2023; 62:e202215558. [PMID: 36449410 PMCID: PMC10107653 DOI: 10.1002/anie.202215558] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The combination of physical properties sensitive to molecular chirality in a single system allows the observation of fascinating phenomena such as magneto-chiral dichroism (MChD) and circularly polarized luminescence (CPL) having potential applications for optical data readout and display technology. Homochiral monodimensional coordination polymers of YbIII were designed from a 2,15-bis-ethynyl-hexahelicenic scaffold decorated with two terminal 4-pyridyl units. Thanks to the coordination of the chiral organic chromophore to Yb(hfac)3 units (hfac- =1,1,1,5,5,5-hexafluoroacetylaconate), efficient NIR-CPL activity is observed. Moreover, the specific crystal field around the YbIII induces a strong magnetic anisotropy which leads to a single-molecule magnet (SMM) behaviour and a remarkable room temperature MChD. The MChD-structural correlation is supported by computational investigations.
Collapse
Affiliation(s)
- Kais Dhbaibi
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Maxime Grasser
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Haiet Douib
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
- Laboratoire des Matériaux Organiques et Hétérochimie (LMOH)Département des sciences de la matièreUniversité Larbi Tébessi de TébessaRoute de Constantine12002TébessaAlgérie
| | - Vincent Dorcet
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Olivier Cador
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | | | - François Riobé
- ENSLCNRSLaboratoire de Chimie UMR 518246 allée d'Italie69364LyonFrance
| | - Olivier Maury
- ENSLCNRSLaboratoire de Chimie UMR 518246 allée d'Italie69364LyonFrance
| | - Stéphan Guy
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Amina Bensalah‐Ledoux
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Bruno Baguenard
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Geert L. J. A. Rikken
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Boris Le Guennic
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Matteo Atzori
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Fabrice Pointillart
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Jeanne Crassous
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| |
Collapse
|
7
|
Douib H, Flores Gonzalez J, Speed S, Montigaud V, Lefeuvre B, Dorcet V, Riobé F, Maury O, Gouasmia A, Le Guennic B, Cador O, Pointillart F. Modulation of the magnetic and photophysical properties in 3d-4f and 4f-4f' heterobimetallic complexes involving a tetrathiafulvalene-based ligand. Dalton Trans 2022; 51:16486-16496. [PMID: 36250236 PMCID: PMC9641533 DOI: 10.1039/d2dt02375j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/03/2022] [Indexed: 06/24/2024]
Abstract
The reaction between the 2-(1-(2,6-di(pyrazol-1-yl)-4-methylpyridyl)-4,5-(4,5-bis(propylthio)-tetrathiafulvalenyl)-1H-benzimidazol-2-yl)-pyridine ligand (L), 1 equivalent of Ln(hfac)3·2H2O/Dy(tta)3·2H2O (hfac- = 1,1,1,5,5,5-hexafluoroacetylacetonate, tta- = 2-thenoyltrifluoroacetonate) and M(hfac)2·2H2O leads to the formation of heteroleptic 3d-4f dinuclear complexes of formula [MLn(hfac)5(L)]n (M(II) = Cd, Zn, Co, Mn, Ni and Ln(III) = Dy, Yb, Nd) and [ZnDy(tta)2(hfac)3(L)]·(CH2Cl2). Their X-ray structures reveal that the two coordination sites are occupied by one Ln(III) ion and one M(II) transition metal respectively. The M(II) ions are coordinated to the benzoimidazolylpyridine (bzip) moiety in a N2O4 coordination sphere, while the Ln(III) ions are coordinated to the 2,6-di(pyrazol-1-yl)-4-pyridine (dpp) moiety in a N3O6 surrounding. When Dy(III) ion is used a field-induced Single-Molecule Magnet (SMM) behavior is detected with a magnetic relaxation time slightly dependent to the nature of the vicinal divalent transition metal. On the other hand, when the Yb(III) is used, intense, moderated or quenched 2F5/2 → 2F7/2 NIR luminescence is observed when the Yb(III) ion is respectively associated with the Zn(II), Mn(II) and Ni(II)/Co(II) ion. The emission intensity can be modulated in function of the metal-to-ligand charge transfer and d-d transition intensities. The replacement of the divalent transition metal by a trivalent lanthanide leads to the formation of heteroleptic 4f-4f' dinuclear complexes of formula [Ln2-xLn'x(hfac)6(L)]·a(CH2Cl2)·b(C6H14) and [Dy1.11Nd0.89(tta)3(hfac)3(L)]. The coordination selectivity is based on the radius. Among the 4f-4f' series, the Dy(III) derivatives displayed such ion in N2O6 eight-coordinated sphere allowing the observation of SMM behavior. The three compounds [Dy1.21Nd0.79(hfac)6(L)]·2(CH2Cl2)·(C6H14), [Yb1.04Nd0.96(hfac)6(L)] and [YbPr(hfac)6(L)] displayed respectively Nd(III), modarated Yb(III) and intense Yb(III) NIR emissions.
Collapse
Affiliation(s)
- Haiet Douib
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-UR1, Université de Rennes 1, 35042 Rennes Cedex, France.
- Laboratoire des Matériaux Organiques et Hétérochimie (LMOH), Département des sciences de la matière, Université Larbi Tébessi de Tébessa, Route de Constantine 12002, Tébessa, Algeria
| | - Jessica Flores Gonzalez
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-UR1, Université de Rennes 1, 35042 Rennes Cedex, France.
| | - Saskia Speed
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Vincent Montigaud
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-UR1, Université de Rennes 1, 35042 Rennes Cedex, France.
| | - Bertrand Lefeuvre
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-UR1, Université de Rennes 1, 35042 Rennes Cedex, France.
| | - Vincent Dorcet
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-UR1, Université de Rennes 1, 35042 Rennes Cedex, France.
| | - François Riobé
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Olivier Maury
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Abdelkrim Gouasmia
- Laboratoire des Matériaux Organiques et Hétérochimie (LMOH), Département des sciences de la matière, Université Larbi Tébessi de Tébessa, Route de Constantine 12002, Tébessa, Algeria
| | - Boris Le Guennic
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-UR1, Université de Rennes 1, 35042 Rennes Cedex, France.
| | - Olivier Cador
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-UR1, Université de Rennes 1, 35042 Rennes Cedex, France.
| | - Fabrice Pointillart
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-UR1, Université de Rennes 1, 35042 Rennes Cedex, France.
| |
Collapse
|
8
|
Shen Y, Qu TB, Zhang XY, Chen FY, Liu BQ, Zhang JW. Six nickel-lanthanoid heterometallic complexes based on 2,5-dichlorobenzoate and phen: Syntheses, structures and magnetic properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zeng M, Zhou ZY, Wu XR, Liu CM, Kou HZ. Assembly of a Heterotrimetallic Zn 2Dy 2Ir Pentanuclear Complex toward Multifunctional Molecular Materials. Inorg Chem 2022; 61:14275-14281. [PMID: 36031796 DOI: 10.1021/acs.inorgchem.2c01822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rational selection of metal ions and organic ligands to synthesize metal-organic complexes (MOCs) is necessary for constructing multifunctional materials. Herein, we have obtained a novel heterotrimetallic Zn2Dy2Ir pentanuclear MOC by the assembly of DyIII, luminescent ZnII(valpn), and [IrIII(H2L)(ppy)2]Cl metalloligands (Hppy = 2-phenylpyridine, H2L = 2,2'-bipyridine-5,5'-di-p-benzoic acid). Single-crystal structural analysis shows that the central [IrIII(L)(ppy)2]- bridges two ZnDy moieties using two carboxylates of L2-. Measurements of organic light-emitting diodes (OLEDs) show that the maximum luminance is 284.2 cd/m2 and the turn-on voltage is 6 V. Magnetic studies reveal that Zn2Dy2Ir is a field-induced single-molecule magnet (SMM) with an energy barrier of 19.1(2) K under a 2 kOe dc field. Zn2Dy2Ir shows luminescence sensing with a quenching efficiency of up to 99.0% for 2,4,6-trinitrophenol (TNP).
Collapse
Affiliation(s)
- Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Ze-Yang Zhou
- Beijing National Laboratory for Molecular Sciences, Centre for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xue-Ru Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Centre for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
10
|
Xu K, Xie X, Zheng LM. Iridium-lanthanide complexes: Structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Li Z, Bu J, Zhang R, Zhang C, Wu D, Zhai B. Two temperature-dependent 2D heterometallic Cd(II)–Dy(III) coordination polymers exhibiting slow magnetic relaxation and luminescence properties. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zeng M, Ji SY, Wu XR, Zhang YQ, Liu CM, Kou HZ. Magnetooptical Properties of Lanthanide(III) Metal-Organic Frameworks Based on an Iridium(III) Metalloligand. Inorg Chem 2022; 61:3097-3102. [PMID: 35147023 DOI: 10.1021/acs.inorgchem.1c03322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integrating magnetic and optical properties into a metal-organic framework (MOF) remains a great challenge. Herein, we have reasonably constructed two 3D magnetooptical MOFs by incorporating a [IrIII(ppy)2(bpy)]+-based fluorescent metalloligand and magnetic LnIII centers. The alternating arrangements of Δ- or Λ-[IrIII(ppy)2(bpy)]+ endow these MOFs with enhanced optical properties. Moreover, the use of DyIII leads to field-induced slow magnetic relaxation. This work provides an effective strategy for the preparation of magnetooptical bifunctional MOFs.
Collapse
Affiliation(s)
- Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shi-Yang Ji
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xue-Ru Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
13
|
Fan K, Bao S, Yu Z, Huang X, Liu Y, Kurmoo M, Zheng L. Engineering Heteronuclear Arrays from
Ir
III
‐Metalloligand
and
Co
II
Showing Coexistence of Slow Magnetization Relaxation and Photoluminescence. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kun Fan
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Song‐Song Bao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Zi‐Wen Yu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Xin‐Da Huang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Yu‐Jie Liu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Mohamedally Kurmoo
- Institut de Chimie Université de Strasbourg CNRS‐UMR7177 4 rue Blaise Pascal Strasbourg Cedex 67007 France
| | - Li‐Min Zheng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
14
|
Nakayama N, Hijikata M, Ohmagari H, Tanaka H, Inazuka Y, Saito D, Obata S, Ohta K, Kato M, Goto H, Hasegawa M. Computational studies for crystal structures of helicate lanthanide complexes based on X-ray analyses. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naofumi Nakayama
- CONFLEX Co., Shinagawa Center Bldg., 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Masahiro Hijikata
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Hitomi Ohmagari
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Hideyuki Tanaka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Yudai Inazuka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Daisuke Saito
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shigeaki Obata
- CONFLEX Co., Shinagawa Center Bldg., 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Kazuo Ohta
- CONFLEX Co., Shinagawa Center Bldg., 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hitoshi Goto
- Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Miki Hasegawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
15
|
Cadmium-Inspired Self-Polymerization of {Ln IIICd 2} Units: Structure, Magnetic and Photoluminescent Properties of Novel Trimethylacetate 1D-Polymers (Ln = Sm, Eu, Tb, Dy, Ho, Er, Yb). Molecules 2021; 26:molecules26144296. [PMID: 34299571 PMCID: PMC8307922 DOI: 10.3390/molecules26144296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
A series of heterometallic carboxylate 1D polymers of the general formula [LnIIICd2(piv)7(H2O)2]n·nMeCN (LnIII = Sm (1), Eu (2), Tb (3), Dy (4), Ho (5), Er (6), Yb (7); piv = anion of trimethylacetic acid) was synthesized and structurally characterized. The use of CdII instead of ZnII under similar synthetic conditions resulted in the formation of 1D polymers, in contrast to molecular trinuclear complexes with LnIIIZn2 cores. All complexes 1–7 are isostructural. The luminescent emission and excitation spectra for 2–4 have been studied, the luminescence decay kinetics for 2 and 3 was measured. Magnetic properties of the complexes 3–5 and 7 have been studied; 4 and 7 exhibited the properties of field-induced single-molecule magnets in an applied external magnetic field. Magnetic properties of 4 and 7 were modelled using results of SA-CASSCF/SO-RASSI calculations and SINGLE_ANISO procedure. Based on the analysis of the magnetization relaxation and the results of ab initio calculations, it was found that relaxation in 4 predominantly occurred by the sum of the Raman and QTM mechanisms, and by the sum of the direct and Raman mechanisms in the case of 7.
Collapse
|
16
|
Wegner W, Zakrzewski JJ, Zychowicz M, Chorazy S. Incorporation of expanded organic cations in dysprosium(III) borohydrides for achieving luminescent molecular nanomagnets. Sci Rep 2021; 11:11354. [PMID: 34059691 PMCID: PMC8166919 DOI: 10.1038/s41598-021-88446-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/05/2021] [Indexed: 11/09/2022] Open
Abstract
Luminescent single-molecule magnets (SMMs) constitute a class of molecular materials offering optical insight into magnetic anisotropy, magnetic switching of emission, and magnetic luminescent thermometry. They are accessible using lanthanide(III) complexes with advanced organic ligands or metalloligands. We present a simple route to luminescent SMMs realized by the insertion of well-known organic cations, tetrabutylammonium and tetraphenylphosphonium, into dysprosium(III) borohydrides, the representatives of metal borohydrides investigated due to their hydrogen storage properties. We report two novel compounds, [n-Bu4N][DyIII(BH4)4] (1) and [Ph4P][DyIII(BH4)4] (2), involving DyIII centers surrounded by four pseudo-tetrahedrally arranged BH4- ions. While 2 has higher symmetry and adopts a tetragonal unit cell (I41/a), 1 crystallizes in a less symmetric monoclinic unit cell (P21/c). They exhibit yellow room-temperature photoluminescence related to the f-f electronic transitions. Moreover, they reveal DyIII-centered magnetic anisotropy generated by the distorted arrangement of four borohydride anions. It leads to field-induced slow magnetic relaxation, well-observed for the magnetically diluted samples, [n-Bu4N][YIII0.9DyIII0.1(BH4)4] (1@Y) and [Ph4P][YIII0.9DyIII0.1(BH4)4] (2@Y). 1@Y exhibits an Orbach-type relaxation with an energy barrier of 26.4(5) K while only the onset of SMM features was found in 2@Y. The more pronounced single-ion anisotropy of DyIII complexes of 1 was confirmed by the results of the ab initio calculations performed for both 1-2 and the highly symmetrical inorganic DyIII borohydrides, α/β-Dy(BH4)3, 3 and 4. The magneto-luminescent character was achieved by the implementation of large organic cations that lower the symmetry of DyIII centers inducing single-ion anisotropy and separate them in the crystal lattice enabling the emission property. These findings are supported by the comparison with 3 and 4, crystalizing in cubic unit cells, which are not emissive and do not exhibit SMM behavior.
Collapse
Affiliation(s)
- Wojciech Wegner
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
- Center of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
17
|
Liu J, Zou Q, Huang X, Bao S, Zheng L. Dysprosium Coordination Polymer Incorporating Dianthracene: Thermo‐induced Phase Transition Accompanied with Magnetic and Optical Changes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jing‐Cui Liu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Xin‐Da Huang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Song‐Song Bao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Li‐Min Zheng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| |
Collapse
|
18
|
Yang TH, Wang SF, Lin CL, Wang X, Zhu B, Wu D. Ionothermal synthesis of octahedral lanthanoid coordination networks exhibiting slow magnetization relaxation and efficient photoluminescence. Dalton Trans 2021; 50:1293-1299. [PMID: 33393532 DOI: 10.1039/d0dt03353g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ionothermal reaction of lanthanoid salts with tetraethyl-p-xylenediphosphonate (tepxdp) in ionic liquids, such as choline chloride and malonic acid, resulted in the formation of three novel lanthanoid-organic coordination networks with the formula [Ln(H2pxdp)1.5]n {Ln = Tb (1), Dy (2) and Ho(3) and H4pxdp = p-xylenediphosphonic acid}. The structures, photoluminescence and magnetic properties of the three compounds were investigated in detail. Single crystal X-ray diffraction analysis revealed that the three compounds are isostructural and the Ln3+ ions show an unusual six-coordinate environment with the {LnO6} octahedron. In these compounds, each {PO3C} tetrahedron is corner-shared with two {LnO6} octahedra and each {LnO6} octahedron is corner-shared with six {PO3C} tetrahedra, thus forming an inorganic layer in the crystallographic ab plane. The inorganic layers are further connected by a phenyl group, leading to a three-dimensional framework. Compound 1 exhibits the strong and characteristic emission of TbIII with an impressive quantum yield of 46.2%. Detailed magnetic analysis demonstrated that compound 2 displays a slow magnetic relaxation of magnetization with multiple relaxation mechanisms. The anisotropic energy barrier and the pre-exponential factor τ0 are 51.2 K and 3.9 × 10-7 s, respectively, in the presence of a direct-current field of 500 Oe. This work demonstrates a successful strategy to isolate octahedrally coordinated lanthanoid complexes through ionothermal synthesis to exhibit the single-ion-magnet-like behaviour and photoluminescence properties.
Collapse
Affiliation(s)
- Ting-Hai Yang
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 23001, P. R. China. and State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shu-Fan Wang
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 23001, P. R. China.
| | - Chen-Lan Lin
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 23001, P. R. China.
| | - Xin Wang
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 23001, P. R. China.
| | - Binglong Zhu
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 23001, P. R. China.
| | - Dayu Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
19
|
Fan K, Xu F, Kurmoo M, Huang XD, Liao CH, Bao SS, Xue F, Zheng LM. Metal–Metalloligand Coordination Polymer Embedding Triangular Cobalt–Oxo Clusters: Solvent- and Temperature-Induced Crystal to Crystal Transformations and Associated Magnetism. Inorg Chem 2020; 59:8935-8945. [DOI: 10.1021/acs.inorgchem.0c00762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kun Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Feng Xu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
- University of Science and Technology of China, Hefei, 230026, People’s Republic of China
| | - Mohamedally Kurmoo
- Institut de Chimie, Université de Strasbourg CNRS-UMR7177, 4 rue Blaise Pascal, Strasbourg Cedex 67007, France
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Chwen-Haw Liao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Fei Xue
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|