1
|
Yan H, Calado CMS, Wang H, Murugesu M, Sun WB. A novel Ln 3+/Al 3+ metallacrown multifunctional material for latent fingerprint detection, luminescent thermometers and luminescent sensors. Chem Sci 2025; 16:4821-4830. [PMID: 39944122 PMCID: PMC11811728 DOI: 10.1039/d4sc08549c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025] Open
Abstract
Lanthanide luminescent complexes are active and thriving in various research fields due to their unique optical properties, while optical materials across a wide spectral range and with multiple functions in one were rarely reported. In this work, a new class of Ln3+/Al3+ metallacrowns (MCs) were constructed with excellent luminescence properties in both the visible and near-infrared regions, and the elaborate luminescence modulation can be achieved by doping with different Ln3+ ions. Strikingly, the powder of LnMC was developed as a luminescent nanomaterial for the detection of latent fingerprints (LFPs), and even the third level details of fingerprints can be clearly recognized, which provides a reference for the identification of fingerprints in the field of criminal investigation. More importantly, TbMC and Tb0.1Sm0.9MC can be successfully used as luminescent thermometers with sensitivities of 2.51% °C-1 and 2.33% °C-1, respectively, higher than most reported values. Meanwhile, TbMC was developed as a luminescent probe for Fe3+ and 2,6-pyridinedicarboxylic acid (DPA) with low limits of detection (LOD) of 0.51 μM and 4.26 μM, respectively, representing the first example of MC with luminescence sensing. Also of note is that SmMC, Tb0.1Sm0.9MC and TbMC can be functionalized as luminescent inks and films due to their clear recognizable colours in the visible range, suggesting a new strategy for high-level anti-counterfeiting. In short, the LnMC luminescent material has wide application prospects in many fields, especially rare for multifunctional applications of small-molecule complexes with non-metal-organic frameworks.
Collapse
Affiliation(s)
- Han Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Claudia M S Calado
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Hao Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Wen-Bin Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| |
Collapse
|
2
|
Salerno EV, Foley CM, Marzaroli V, Schneider BL, Sharin MD, Kampf JW, Marchiò L, Zeller M, Guillot R, Mallah T, Tegoni M, Pecoraro VL, Zaleski CM. Unique Dimerization Topology and Countercation Binding Modes in 12‐Metallacrown‐4 Compounds. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elvin V. Salerno
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States
| | - Collin M. Foley
- Department of Chemistry and Biochemistry Shippensburg University Shippensburg Pennsylvania 17257 United States
| | - Vittoria Marzaroli
- Department of Chemistry Life Sciences, and Environmental Sustainability University of Parma Parco Area delle Scienze 11 A 43124 Parma Italy
| | | | - Max D. Sharin
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States
| | - Jeff W. Kampf
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States
| | - Luciano Marchiò
- Department of Chemistry Life Sciences, and Environmental Sustainability University of Parma Parco Area delle Scienze 11 A 43124 Parma Italy
| | - Matthias Zeller
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Saclay ICMMO CNRS 8182 91405 Orsay, Cedex France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Saclay ICMMO CNRS 8182 91405 Orsay, Cedex France
| | - Matteo Tegoni
- Department of Chemistry Life Sciences, and Environmental Sustainability University of Parma Parco Area delle Scienze 11 A 43124 Parma Italy
| | - Vincent L. Pecoraro
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States
| | - Curtis M. Zaleski
- Department of Chemistry and Biochemistry Shippensburg University Shippensburg Pennsylvania 17257 United States
| |
Collapse
|
3
|
Biros ES, Ward CL, Allen MJ, Lutter JC. Identification of seven-coordinate Ln III ions in a Ln III[15-MC Fe III N(shi)-5](OAc) 2Cl species crystallized from methanol and pyridine. JOURNAL OF CHEMICAL CRYSTALLOGRAPHY 2022; 52:152-160. [PMID: 35602264 PMCID: PMC9122301 DOI: 10.1007/s10870-021-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/13/2021] [Indexed: 06/03/2023]
Abstract
The title metallacrown (MC) complexes LnIII[15-MCFeIIIN(shi)-5](OAc)2CI(C5H5N)6 (Ln1), where OAc- is acetate, shi3- is salicylhydroximate, and Ln = Gd and Dy, were synthesized via a self-assembly reaction in methanol and pyridine. Single crystals were grown using slow evaporation and characterized using X-ray diffraction. Seven-coordinate capped octahedron geometries were observed for the lanthanide ion in both complexes, which is uncommon for trivalent lanthanide species. The 15-MC-5 is a ruffled metallacrown archetype similar to previously reported mixed-valent manganese metallacrowns.
Collapse
Affiliation(s)
- Elizabeth S. Biros
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Cassandra L. Ward
- Lumingen Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, MI. 48202, USA
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Jacob C. Lutter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
4
|
Eliseeva SV, Travis JR, Nagy SG, Smihosky AM, Foley CM, Kauffman AC, Zaleski CM, Petoud S. Visible and near-infrared emitting heterotrimetallic lanthanide-aluminum-sodium 12-metallacrown-4 compounds: discrete monomers and dimers. Dalton Trans 2022; 51:5989-5996. [PMID: 35352078 DOI: 10.1039/d1dt04277g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The luminescence properties of two types of heterotrimetallic aluminum-lanthanide-sodium 12-metallacrown-4 compounds are presented here, LnNa(ben)4[12-MCAl(III)N(shi)-4] (LnAl4Na) and {LnNa[12-MCAl(III)N(shi)-4]}2(iph)4 (Ln2Al8Na2), where Ln = GdIII, TbIII, ErIII, and YbIII, MC is metallacrown, ben- is benzoate, shi3- is salicylhydroximate, and iph2- is isophthalate. The aluminum-lanthanide-sodium metallacrowns formed with benzoate are discrete monomers while, upon replacement of the benzoate with the dicarboxylate isophthalate, two individual metallacrowns can be joined to form a dimer. In the solid state, the terbium version of each structure type displays emission in the visible region, and the erbium and ytterbium complexes emit in the near-infrared. The luminescence lifetimes (τobs) and quantum yields have been collected under ligand excitation (QLLn) for both LnAl4Na monomers and Ln2Al8Na2 dimers. Several of these values tend to be shorter (luminescence lifetimes) and smaller (quantum yields) than the corresponding values recorded for the structurally similar gallium-lanthanide monomer and dimer 12-MC-4 molecules. However, the quantum yield value recorded for the visible emitting Tb2Al8Na2 dimer, 43.9%, is the highest value observed in the solid state to date for a TbIII based metallacrown.
Collapse
Affiliation(s)
- Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans Cedex 2, France.
| | - Jordan R Travis
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Sarah G Nagy
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Alyssa M Smihosky
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Collin M Foley
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Abigail C Kauffman
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Curtis M Zaleski
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans Cedex 2, France.
| |
Collapse
|
5
|
Yao H, Calvez G, Daiguebonne C, Suffren Y, Bernot K, Roisnel T, Guillou O. Synthesis, Crystal Structure, and Luminescence Properties of the Iso-Reticular Series of Lanthanide Coordination Polymers Synthesized from Hexa-Lanthanide Molecular Precursors. Inorg Chem 2022; 61:4895-4908. [PMID: 35289618 DOI: 10.1021/acs.inorgchem.1c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microwave-assisted reactions in DMSO, between a hexa-lanthanide octahedral complex ([Ln6(μ6-O)(μ3-OH)8(NO3)6(H2O)12·2NO3·2H2O] with Ln = Nd-Yb plus Y) and either 3-halogenobenzoic acid (hereafter symbolized by 3-xbH with x = f or c for fluoro or chloro, respectively) or 4-halogenobenzoic acid (hereafter symbolized by 4-xbH with x = f, c, or b for fluoro, chloro, or bromo, respectively), lead to 1D lanthanide coordination polymers. These coordination polymers are almost iso-reticular. The crystal structure is described on the basis of the coordination polymer with chemical formula [Tb(4-fb)3(DMSO)(H2O)2·DMSO]∞ obtained from 4-fluorobenzoic acid (4-fbH) and the Tb3+-based octahedral complex: It crystallizes in the triclinic system, space group P1̅ (n°2), with the following cell parameters: a = 9.8561(9) Å, b = 10.5636(9) Å, c = 15.1288(15) Å, α = 100.840(3)°, β = 95.552(3)°, γ = 110.482(3)°, V = 1426.4(3) Å3, and Z = 2. It can be described on the basis of 1D molecular chains. Luminescence properties of the Tb and Eu derivatives have been measured and compared vs the halogeno-function and its position (meta or para). Some molecular alloys have also been prepared to estimate the strength of the intermetallic energy transfers. To confirm that the hexa-nuclear complexes (and not the halogenated ligand) have a structuring effect for the formation of the straight chain-like molecular motif, another coordination polymer with chemical formula [Tb(4-npa)3DMSO·DMSO·H2O]∞ where 4-npaH symbolizes 4-nitro-phenyl-acetic acid has been prepared. It crystallizes in the triclinic system, space group P1̅ (n°2) with the following cell parameters: a = 7.8784(8) Å, b = 14.8719(16) Å, c = 15.2753(17) Å, α = 73.612(4)°, β = 86.406(4)°, γ = 83.104(4)°, V = 1703.8(3) Å3, and Z = 2. Its crystal structure can be described on the basis of a molecular motif that is similar to the one observed in the five previous crystal structures which confirms the structuring effect of the hexa-nuclear complexes.
Collapse
Affiliation(s)
- Haiyun Yao
- Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", 35708 Rennes, France
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", 35708 Rennes, France
| | - Carole Daiguebonne
- Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", 35708 Rennes, France
| | - Yan Suffren
- Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", 35708 Rennes, France
| | - Kevin Bernot
- Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", 35708 Rennes, France.,Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France
| | - Thierry Roisnel
- Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", 35708 Rennes, France
| | - Olivier Guillou
- Univ Rennes, INSA Rennes, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", 35708 Rennes, France
| |
Collapse
|
6
|
Zhu Z, Jin GQ, Wu J, Ying X, Zhao C, Zhang JL, Tang J. Highly symmetric Ln( iii) boron-containing macrocycles as bright fluorophores for living cell imaging. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boron-assisted highly symmetric rigid Ln macrocycles were designed and synthesized, showing high brightness and promising potential applications in bioimaging.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xu Ying
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Paiva FF, Ferreira LA, Rosa IM, da Silva RM, Sigoli F, Cambraia Alves O, Garcia F, Guedes GP, Marinho MV. Heterobimetallic metallacrown of EuIIICuII5 with 5-methyl-2-pyrazinehydroxamic acid: Synthesis, crystal structure, magnetism, and the influence of CuII ions on the photoluminescent properties. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Salerno EV, Eliseeva SV, Schneider BL, Kampf JW, Petoud S, Pecoraro VL. Visible, Near-Infrared, and Dual-Range Luminescence Spanning the 4f Series Sensitized by a Gallium(III)/Lanthanide(III) Metallacrown Structure. J Phys Chem A 2020; 124:10550-10564. [DOI: 10.1021/acs.jpca.0c08819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elvin V. Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Bernadette L. Schneider
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Vincent L. Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Eliseeva SV, Salerno EV, Lopez Bermudez BA, Petoud S, Pecoraro VL. Dy3+ White Light Emission Can Be Finely Controlled by Tuning the First Coordination Sphere of Ga3+/Dy3+ Metallacrown Complexes. J Am Chem Soc 2020; 142:16173-16176. [DOI: 10.1021/jacs.0c07198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071 Orléans, Cedex 2, France
| | - Elvin V. Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Beatriz A. Lopez Bermudez
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071 Orléans, Cedex 2, France
| | - Vincent L. Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|