1
|
Metal-Free Catalysis in C-C Single-Bond Cleavage: Achievements and Prospects. Top Curr Chem (Cham) 2022; 380:38. [PMID: 35951267 DOI: 10.1007/s41061-022-00393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 10/15/2022]
Abstract
This review article emphasizes the C-C bond cleavage in organic synthesis via metal-free approach. Conventional organic synthesis mainly deals with the reactive π bonds and polar σ bonds. In contrast, the ubiquitous C-C single bonds are inherently stable and are less reactive, which poses a challenge to synthetic chemists. Although inert, such C-C single-bond cleavage reactions have gained attention amongst synthetic chemists, as they provide unique and more straightforward routes, with significantly fewer steps. Several review articles have been reported regarding the activation and cleavage of C-C bonds using different transition metals. However, given the high cost and toxicity of many of these metals, the development of strategies under metal-free conditions is of utmost importance. Though many research articles have been published in this area, no review article has been reported so far. Herein, we discuss the reactions in a more concise way from the year 2012 to today, with emphasis on important reactions. Mechanisms of all the reactions are also well addressed. We believe that this review will be beneficial for the readers who work in this field.
Collapse
|
2
|
Wang DX, Cao P. The crystal structure of 2,5,5-triphenyl-3,5-dihydro-4 H-imidazol-4-one, C 21H 16N 2O. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C21H16N2O, monoclinic, P21/c (no. 14), a = 13.8987(3) Å, b = 15.0321(5) Å, c = 8.1727(2) Å, β = 99.337(2)°, V = 1684.87(8) Å3, Z = 4, R
gt
(F) = 0.0411, wR
ref
(F
2) = 0.1137, T = 293(2) K.
Collapse
Affiliation(s)
- De-Xing Wang
- Nanjing Innovation Centre for Environmental Protection , Nanjing , China
| | - Peng Cao
- Taizhou Institute of Science and Technology, Nanjing University of Science and Technology , Taizhou , Jiangsu , China
| |
Collapse
|
3
|
Cai Y, Liu C, Liu G, Li C, Jiang H, Zhu C. Access to α,α-difluoro(arylthio)methyl oxetanes from α,α-difluoro(arylthio)methyl ketones and trimethylsulfoxonium halides: scope, mechanism and applications. Org Biomol Chem 2022; 20:1500-1509. [DOI: 10.1039/d1ob02268g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and practical method for the synthesis of α,α-difluoro(arylthio)methyl oxetanes is reported that occurs by the reaction of α,α-difluoro(arylthio)methyl ketones with trimethylsulfoxonium halides. This reaction undergoes the sequential Corey-Chaykovsky...
Collapse
|
4
|
Li F, Wu Z, Wang J, Zhang S, Yu J, Yuan Z, Liu J, Shen R, Zhou Y, Liu L. Metal-free synthesis of N-sulfonylformamidines via skeletal reconstruction of sulfonyl oximonitriles. Org Chem Front 2022. [DOI: 10.1039/d1qo01665b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We firstly develop an unprecedented domino reaction of sulfonyl oximonitriles with secondary amines to streamline synthesis of N-sulfonylformamidines in decent to high yields under mild reaction conditions.
Collapse
Affiliation(s)
- Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Siyuan Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jiaxin Yu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Zhen Yuan
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingya Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Renzeng Shen
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
5
|
Hou QL, Tu HY, Yan XW, Zhang XG. Regioselective synthesis of 4-trifluoromethylpyrazoles from the cycloaddition of sulfonyl hydrazones with 2-chloro-2-trifluoromethylstyrenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Xie F, Chen X, Zhang X, Luo C, Lin S, Chen X, Li B, Li Y, Zhang M. OMS-2 nanorod-supported cobalt catalyst for aerobic dehydrocyclization of vicinal diols and amidines: Access to functionalized imidazolones. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Liu C, Zhu C, Cai Y, Jiang H. Solvent-Switched Oxidation Selectivities with O 2 : Controlled Synthesis of α-Difluoro(thio)methylated Alcohols and Ketones. Angew Chem Int Ed Engl 2021; 60:12038-12045. [PMID: 33704886 DOI: 10.1002/anie.202017271] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/12/2022]
Abstract
The solvent-switched hydroxylation and oxygenation of α-difluoro(thio)methylated carbanions with molecular oxygen under mild conditions are reported. This strategy tames the redox reactions of the in situ generated hydroperoxy difluoromethylsulfides, in which solvent-bonding can alter their reactivity and switch the oxidation selectivities. These controllable three-component reactions of gem-difluoroalkenes, thiols and molecular oxygen afford various useful α-difluoro(thio)methylated alcohols and ketones in high yields. Significantly, this protocol has been applied in the synthesis different bioactive molecules. Mechanism studies enable the detection of the hydroperoxy difluoromethylsulfide intermediates and exclude the thiol-based radical pathway.
Collapse
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
8
|
Liu C, Zhu C, Cai Y, Jiang H. Solvent‐Switched Oxidation Selectivities with O
2
: Controlled Synthesis of α‐Difluoro(thio)methylated Alcohols and Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
9
|
Zeng H, Fang X, Yang Z, Zhu C, Jiang H. Regioselective Synthesis of 5-Trifluoromethylpyrazoles by [3 + 2] Cycloaddition of Nitrile Imines and 2-Bromo-3,3,3-trifluoropropene. J Org Chem 2021; 86:2810-2819. [PMID: 33423498 DOI: 10.1021/acs.joc.0c02765] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A general and practical method for the synthesis of 5-trifluoromethylpyrazoles is reported that occurs by the coupling of hydrazonyl chlorides with environmentally friendly and large-tonnage industrial feedstock 2-bromo-3,3,3-trifluoropropene (BTP). This exclusively regioselective [3 + 2] cycloaddition of nitrile imines and with BTP is catalyst-free and operationally simple and features mild conditions, high yields, gram-scalable, a broad substrate scope, and valuable functional group tolerance. Significantly, our method has been applied for the synthesis of the key intermediate of an active agonist of sphingosine 1-phosphate receptor.
Collapse
Affiliation(s)
- Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaojie Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiyi Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.,National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Li W, Xin J, Zhai P, Lin J, Huang S, Gao W, Li X. Access to highly functionalized imidazolones bearing α-amino acid esters via KOH-promoted annulation of amidines, nitrosoarenes and malonic esters. Org Biomol Chem 2021; 19:6473-6477. [PMID: 34236374 DOI: 10.1039/d1ob00930c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach to obtain highly functionalized imidazolones bearing α-amino acid esters through KOH-mediated one-pot three-component annulation of amidines, nitrosoarenes and malonic esters is reported. This reaction features broad substrate scope, a cheap and readily available promoter, good to high yields for most substrates and mild reaction conditions. The mechanism study shows that the KOH-mediated formation of the imine intermediate via the reaction of nitrosoarenes with malonic esters is a key step.
Collapse
Affiliation(s)
- Wenhui Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jie Xin
- Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng 271600, China
| | - Pingan Zhai
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Wenchao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| |
Collapse
|
11
|
Zeng H, Zhu C, Liu C, Cai Y, Chen F, Jiang H. Three component hydroxyletherification and hydroxylazidation of (trifluoromethyl)alkenes: access to α-trifluoromethyl β-heteroatom substituted tertiary alcohols. Chem Commun (Camb) 2020; 56:6241-6244. [DOI: 10.1039/d0cc02550j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The three component hydroxyletherification and hydroxylazidation reactions of (trifluoromethyl)alkenes are reported, providing various useful α-trifluoromethyl β-heteroatom substituted tertiary alcohols in high yields.
Collapse
Affiliation(s)
- Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
12
|
Zhou MD, Peng Z, Li L, Wang H. Visible-light-promoted organic dye catalyzed perfluoroalkylation of hydrazones under mild conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Zhu C, Zeng H, Liu C, Chen F, Jiang H. Copper-Catalyzed Intermolecular [4 + 2] Annulation Enabled by Internal Oxidant-Promoted C(sp3)–H Functionalization: Access to 3-Trifluoromethylated 3-Hydroxy-cyclohexan-1-ones. Org Lett 2019; 21:4900-4904. [DOI: 10.1021/acs.orglett.9b01817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
14
|
Guo W, Zhao M, Tan W, Zheng L, Tao K, Fan X. Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Org Chem Front 2019. [DOI: 10.1039/c9qo00283a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the synthesis of N-heterocycles using amidines as starting materials, with an emphasis on the mechanisms of these reactions via C–N/C–C bond formation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Mingming Zhao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Wen Tan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xiaolin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| |
Collapse
|