1
|
Zhang X, Qi L, Ren T, Zhang Y, Yu S. Ru-Catalyzed Switchable Reactions of Acrylic Acids with Glyoxylate: Access to Functionalized γ-Butenolides. Org Lett 2024; 26:10658-10664. [PMID: 39648499 DOI: 10.1021/acs.orglett.4c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
We herein report a switchable coupling of acrylic acids with ethyl glyoxylate under ruthenium catalysis enabling the synthesis of diverse functionalized γ-butenolides. The carboxyl-directed vinylic C-H cleavage and dual nucleophilic addition to aldehyde are achieved to deliver hydroxymethylated butanolides under mild and oxidant-free conditions. Alternatively, a controlled and unprecedented tandem C-H cyclization/oxidative homocoupling reaction is realized by using silver salt as the oxidant to generate a range of dimeric butenolides bearing vicinal all-carbon quaternary centers.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Tianci Ren
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
2
|
Fu Q, Wang Y, Nan F. Construction of the hexacyclic core of dispirocochlearoids A−C via a Diels−Alder reaction. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Fu
- Department of Medicinal Chemistry School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Yonghui Wang
- Department of Medicinal Chemistry School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Fajun Nan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
3
|
Zhao X, Ling Q, Cao G, Huo X, Zhao X, Su Y. Research Progress in the Cyclization Reactions with Propargyl Alcohols. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Palladium-catalyzed carbonylation of propargyl diols with primary amines for the synthesis of functionalized acids. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Yu S, Hong C, Liu Z, Zhang Y. Cobalt-Catalyzed Vinylic C-H Addition to Formaldehyde: Synthesis of Butenolides from Acrylic Acids and HCHO. Org Lett 2021; 23:8359-8364. [PMID: 34652922 DOI: 10.1021/acs.orglett.1c03095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A carboxyl-assisted C-H functionalization of acrylic acids with formaldehyde to give butenolides is described. It is the first time that the addition of an inert vinylic C-H bond to formaldehyde has been achieved via cobalt-catalyzed C-H activation. The unique reactivity of the cobalt species was observed when compared with related Rh or Ir catalysts. γ-Hydroxymethylated butenolides were produced by the treatment of Na2CO3 after the catalytic reaction in one pot.
Collapse
Affiliation(s)
- Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Yang H, Zhang J, Chen Z, Wu XF. TFBen (Benzene-1,3,5-triyl triformate): A Powerful and Versatile CO Surrogate. CHEM REC 2021; 22:e202100220. [PMID: 34591367 DOI: 10.1002/tcr.202100220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Carbonylative reactions by the using of CO surrogates constitute a facile avenue for the assembly of valuable carbonyl-containing compounds due to the colorless, toxic, flammable, and not easy-handing character of carbon monoxide gas. Recent advances in the carbonylative transformations with TFBen (benzene-1,3,5-triyl triformate) as a safe and convenient CO precursor are systematically summarized and discussed, which can be divided into three parts based on the patterns of the obtained products. This Review focuses on the discussion of the application of TFBen in carbonylative synthesis of various carbonyl-containing compounds.
Collapse
Affiliation(s)
- Hefei Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, People's Republic of China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
7
|
Tien CH, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium-Catalyzed Carbonylative Transformations. Angew Chem Int Ed Engl 2021; 60:4342-4349. [PMID: 33085182 DOI: 10.1002/anie.202010211] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/08/2020] [Indexed: 12/22/2022]
Abstract
The application of carboxy-MIDA-boronate (MIDA=N-methyliminodiacetic acid) as an in situ CO surrogate for various palladium-catalyzed transformations is described. Carboxy-MIDA-boronate was previously shown to be a bench-stable boron-containing building block for the synthesis of borylated heterocycles. The present study demonstrates that, in addition to its utility as a precursor to heterocycle synthesis, carboxy-MIDA-boronate is an excellent in situ CO surrogate that is tolerant of reactive functionalities such as amines, alcohols, and carbon-based nucleophiles. Its wide functional-group compatibility is highlighted in the palladium-catalyzed aminocarbonylation, alkoxycarbonylation, carbonylative Sonogashira coupling, and carbonylative Suzuki-Miyaura coupling of aryl halides. A variety of amides, esters, (hetero)aromatic ynones, and bis(hetero)aryl ketones were synthesized in good-to-excellent yields in a one-pot fashion.
Collapse
Affiliation(s)
- Chieh-Hung Tien
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Branden S Kwak
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Reed T Larson
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
8
|
Le Z, Zhu Y, Bao Z, Ying J, Wu X. Palladium‐Catalyzed Carbonylative Synthesis of 1,5‐Dihydro‐2
H
‐pyrrol‐2‐ones from Propargyl Amines and Benzyl Chlorides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhengjie Le
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018
| | - Yiwen Zhu
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018
| | - Zhi‐Peng Bao
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018
| | - Jun Ying
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
9
|
Tang J, Zhang J, Zhang Y, Chen Z, Wu XF. Palladium-catalyzed carbonylative synthesis of 5-trifluoromethyl-1,2,4-triazoles from trifluoroacetimidohydrazides and aryl iodides. Org Chem Front 2021. [DOI: 10.1039/d1qo01064f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new palladium-catalyzed three-component carbonylative procedure for the construction of 5-trifluoromethyl-1,2,4-triazoles from trifluoroacetimidohydrazides and aryl iodides has been developed. TFBen is applied as a safe and convenient solid CO surrogate here.
Collapse
Affiliation(s)
- Jianhua Tang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yu Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
10
|
Wang JS, Wang Q, Zhu Y, Gao Q, Ying J, Wu XF. Cobalt-catalyzed carbonylative cycloaddition of substituted diynes to access complexed polycyclic compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00725d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt-catalyzed domino Pauson–Khand and [4 + 2] cycloaddition of substituted diynes has been developed for the rapid construction of complexed polycyclic ring systems.
Collapse
Affiliation(s)
- Jian-Shu Wang
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Qi Wang
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yiwen Zhu
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Qian Gao
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jun Ying
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- 116023 Dalian
- China
| |
Collapse
|
11
|
Wang JS, Yao L, Ying J, Luo X, Wu XF. Palladium-catalyzed directing group assisted and regioselectivity reversed cyclocarbonylation of arylallenes with 2-iodoanilines. Org Chem Front 2021. [DOI: 10.1039/d0qo01404d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A palladium-catalyzed regioselective cyclocarbonylation of N-(2-pyridyl)sulfonyl (N-SO2Py)-2-iodoanilines with allenes was developed. The regioselectivity of arylallenes was reversed. Control experiments and DFT calculations were performed to understand the reaction details.
Collapse
Affiliation(s)
- Jian-Shu Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Lingyun Yao
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Jun Ying
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- 401331 Chongqing
- China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
12
|
Zhu WQ, Fang YC, Han WY, Li F, Yang MG, Chen YZ. Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Org Chem Front 2021. [DOI: 10.1039/d1qo00222h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of chromone fused cyclopentanones are efficiently generated in good to high yields via palladium-catalyzed [2 + 2 + 1] annulation, in which cyclopropenone was utilized for the first time as the sole CO surrogate in the carbonylation process.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Min-Ge Yang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| |
Collapse
|
13
|
Yao L, Shang Y, Wang JS, Pan A, Ying J, Wu XF. Palladium-catalyzed carbonylative cyclization of 2-alkynylanilines and aryl iodides to access N-acyl indoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00205h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A palladium-catalyzed carbonylative synthesis of N-acyl indoles from 2-alkynylanilines and aryl iodides has been developed.
Collapse
Affiliation(s)
- Lingyun Yao
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yan Shang
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jian-Shu Wang
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Ailin Pan
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jun Ying
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Liaoning
- China
| |
Collapse
|
14
|
Villamizar-Mogotocoro AF, León-Rojas AF, Urbina-González JM. Δα,β-Butenolides [Furan-2(5H)-ones]: Ring Construction Approaches and Biological Aspects - A Mini-Review. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x17666200220130735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The five-membered oxacyclic system of furan-2(5H)-ones, commonly named as γ-
butenolides or appropriately as Δ<sup>α,β</sup>-butenolides, is of high interest since many studies have proven its
bioactivity. During the past few years, Δ<sup>α,β</sup>-butenolides have been important synthetic targets, with
several reports of new procedures for their construction. A short compendium of the main different
synthetic methodologies focused on the Δ<sup>α,β</sup>-butenolide ring formation, along with selected examples
of compounds with relevant biological activities of these promising pharmaceutical entities is presented.
Collapse
Affiliation(s)
| | - Andrés-Felipe León-Rojas
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | |
Collapse
|
15
|
Tien C, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium‐Catalyzed Carbonylative Transformations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Alina Trofimova
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Branden S. Kwak
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development Merck & Co., Inc. Rahway NJ 07065 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| |
Collapse
|
16
|
Ismael A, Gevorgyan A, Skrydstrup T, Bayer A. Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aya Ismael
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ashot Gevorgyan
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Annette Bayer
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Yadav P, Pratap R, Ji Ram V. Natural and Synthetic Spirobutenolides and Spirobutyrolactones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pratik Yadav
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110 007 India
| | - Ramendra Pratap
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Vishnu Ji Ram
- B-67, Eldeco Towne IIM road, PO-Diguria Lucknow-226020 Uttar Pradesh India
| |
Collapse
|
18
|
Wang S, Li X, Zang J, Liu M, Zhang S, Jiang G, Ji F. Palladium-Catalyzed Multistep Tandem Carbonylation/N-Dealkylation/Carbonylation Reaction: Access to Isatoic Anhydrides. J Org Chem 2020; 85:2672-2679. [PMID: 31887040 DOI: 10.1021/acs.joc.9b02771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel and efficient synthesis of isatoic anhydride derivatives was developed via palladium-catalyzed multistep tandem carbonylation/N-dealkylation/carbonylation reaction with alkyl as the leaving group and tertiary anilines as nitrogen nucleophiles. This approach features good functional group compatibility and readily available starting materials. Furthermore, it provided a convenient approach for the synthesis of biologically and medicinally useful evodiamine.
Collapse
Affiliation(s)
- Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Jiawang Zang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Meichen Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Siyu Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| |
Collapse
|
19
|
Ying J, Le Z, Wu XF. Benzene-1,3,5-triyl Triformate (TFBen)-Promoted Palladium-Catalyzed Carbonylative Synthesis of 2-Oxo-2,5-dihydropyrroles from Propargyl Amines. Org Lett 2020; 22:194-198. [PMID: 31858806 DOI: 10.1021/acs.orglett.9b04147] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this letter, we developed a palladium-catalyzed procedure for the cyclocarbonylation of propargyl amines. Benzene-1,3,5-triyl triformate (TFBen) has been explored as the CO source and also as the key promotor. Various substituted 2-oxo-dihydropyrroles were produced in a facile manner in good yields (up to 90%).
Collapse
Affiliation(s)
- Jun Ying
- Department of Chemistry , Zhejiang Sci-Tech University , Xiasha Campus, Hangzhou 310018 , People's Republic of China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai , China , 200062
| | - Zhengjie Le
- Department of Chemistry , Zhejiang Sci-Tech University , Xiasha Campus, Hangzhou 310018 , People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry , Zhejiang Sci-Tech University , Xiasha Campus, Hangzhou 310018 , People's Republic of China.,Leibniz-Institut für Katalyse e. V. an der Universität Rostock , Albert-Einstein-Straβe 29a , 18059 Rostock , Germany
| |
Collapse
|
20
|
Ying J, Le Z, Bao ZP, Wu XF. Palladium-catalyzed double carbonylation of propargyl amines and aryl halides to access 1-aroyl-3-aryl-1,5-dihydro-2H-pyrrol-2-ones. Org Chem Front 2020. [DOI: 10.1039/d0qo00007h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A palladium-catalyzed carbonylative procedure for the synthesis of 1-aroyl-3-aryl-1,5-dihydro-2H-pyrrol-2-ones from propargyl amines and aryl halides with TFBen as the CO source has been developed.
Collapse
Affiliation(s)
- Jun Ying
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Zhengjie Le
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Zhi-Peng Bao
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
21
|
Chen Z, Wang LC, Wu XF. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem Commun (Camb) 2020; 56:6016-6030. [DOI: 10.1039/d0cc01504k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in the carbonylative synthesis of heterocycles by using diverse CO surrogates as sources of CO are summarized and discussed.
Collapse
Affiliation(s)
- Zhengkai Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Le-Cheng Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
22
|
Ying J, Le Z, Wu XF. Palladium-catalyzed double-carbonylative cyclization of propargyl alcohols and aryl triflates to expedite construction of 4-aroyl-furan-2(5 H)-ones. Org Chem Front 2020. [DOI: 10.1039/d0qo00874e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A palladium-catalyzed double-carbonylative cyclization of propargyl alcohols and aryl triflates has been developed. Various 4-aroyl-furan-2(5H)-one scaffolds were produced in good yields with Cr(CO)6 as the CO source.
Collapse
Affiliation(s)
- Jun Ying
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Zhengjie Le
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
23
|
Ying J, Gao Q, Wu XF. Site-Selective Carbonylative Synthesis of Structurally Diverse Lactams from Heterocyclic Amines with TFBen as the CO Source. J Org Chem 2019; 84:14297-14305. [DOI: 10.1021/acs.joc.9b02114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Qian Gao
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, Rostock 18059, Germany
| |
Collapse
|