1
|
Pratap A, Maji B. A stepwise dearomatization/nitration/enantioselective homoenolate reaction of quinolines to construct C 3-nitro-substituted tetrahydroquinolines. Org Biomol Chem 2025; 23:3812-3818. [PMID: 40152553 DOI: 10.1039/d5ob00247h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Herein, we describe a stepwise 1,2-reductive dearomatization/selective C3-nitration of quinoline and a subsequent catalytic enantioselective homoenolate addition reaction using a NHC catalyst strategy to construct N-acetyl 3,4-disubstituted tetrahydroquinoline in good yields with remarkably high diastereo- and enantioselectivities (dr >99 : 1, ee up to >99%). An efficient metal- and base-free method for 3-nitroquinoline synthesis from readily accessible quinoline has also been realized.
Collapse
Affiliation(s)
- Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India.
| |
Collapse
|
2
|
Nazeri MT, Nasiriani T, Torabi S, Shaabani A. Isocyanide-based multicomponent reactions for the synthesis of benzopyran derivatives with biological scaffolds. Org Biomol Chem 2024; 22:1102-1134. [PMID: 38251960 DOI: 10.1039/d3ob01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Benzopyrans (BZPs) are among the most privileged and influential small O-heterocycles that form the core of many natural compounds, commercial drugs, biological compositions, agrochemicals, and functional materials. BZPs are divided into six general categories including coumarins, chromans, 2H-chromenes, 4H-chromenes, chromones, and 4-chromanones, each of which is abundant in many plants and foods. These oxygenated heterocyclic compounds are fascinating motifs and have extensive applications in biology and materials science. Hence, numerous efforts have been made to develop innovative approaches for their extraction and synthesis. However, most of them are step-by-step or multi-step strategies that suffer from waste material generation and a tedious extraction process. Isocyanide-based multicomponent reactions (I-MCRs) offer a highly efficient method for overcoming these problems. The I-MCR is a simple and environmentally friendly one-pot domino procedure that does not require intermediate isolation or workup and is generally more efficient in material usage. This review covers all research articles related to I-MCRs for synthesizing BZP derivatives from the beginning to the middle of the year 2023. This strategy will be useful for organic and pharmaceutical chemists to design new drugs and optimize the synthesis steps of biological compounds and commercial drugs with benzopyran cores.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Tahereh Nasiriani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Saeed Torabi
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
- Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
3
|
Liu B, Wang L, Qin Y, Xu X, Zhao J. Synthesis of Trisubstituted Chromanes by Lewis-Base-Catalyzed Three-Component Electrophilic Thiofunctionalization of Cyclopropene with Phenols via a Formal [3 + 3] Annulation. Org Lett 2022; 24:5693-5697. [PMID: 35921617 DOI: 10.1021/acs.orglett.2c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Lewis-base-catalyzed three-component electrophilic thiofunctionalization of cyclopropene with phenol is developed to furnish various trisubstituted chromanes in high trans-diasteroselectivity. This metal-free protocol is easy to scale-up, offers a unique 2,2,3-substitution pattern, and delivers chromanes with diversified core substitution patterns. The unprecedented tolerance of strong electron-withdrawing substituents at the phenol renders the protocol indispensable to access the otherwise inaccessible chromane chemical space that is important for medicinal chemistry campaigns.
Collapse
Affiliation(s)
- Bowen Liu
- Faculty of Chemistry and Biology, Changchun University of Technology, 2055 Yan'an Street, Changchun, Jilin 130012, China
| | - Lei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yunfei Qin
- Faculty of Chemistry and Biology, Changchun University of Technology, 2055 Yan'an Street, Changchun, Jilin 130012, China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jinbo Zhao
- Faculty of Chemistry and Biology, Changchun University of Technology, 2055 Yan'an Street, Changchun, Jilin 130012, China.,School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai-An, Shandong 271016, China
| |
Collapse
|
4
|
Das T, Mohapatra S, Priyadarsini Mishra N, Nayak S. Catalyst and base free aza-Michael addition reaction: Synthesis of poly-substituted 4-pyrazole based benzopyrans. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Das S. 3-Nitrochromenes in the synthesis of fused- and spiro scaffolds: Recent progress. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2026397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, India
| |
Collapse
|
6
|
Zimnitskiy NS, Barkov A, Kochnev IA, Kutyashev I, Korotaev VY, Sosnovskikh V. Highly diastereoselective annulation of 2-substituted 3-nitro-2H-chromenes with hemicurcuminoids and curcuminoids via a double and triple Michael reaction cascade. NEW J CHEM 2022. [DOI: 10.1039/d2nj02019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The K2CO3-catalysed double Michael addition of (E)-1,5-diaryl- and 1-alkyl-5-arylpent-4-ene-1,3-diones to 2-trifluoromethyl- and 2-phenyl-substituted 3-nitro-2H-chromenes in dichloromethane at room temperature for 48 h results in 10-aroyl(acyl)-7-aryl-6a-nitro-6,6a,7,8,10,10a-hexahydro-9H-benzo[c]chromen-9-ones in 75-98% yields as individual...
Collapse
|
7
|
Shukla PM, Pratap A, Maji B. N-Heterocyclic carbene-catalysed homoenolate addition reaction to 3-cyano-2-imino-2 H-chromenes: synthesis of C 4-functionalized 2-amino-3-cyano-4 H-chromene. Org Biomol Chem 2022; 20:8203-8208. [DOI: 10.1039/d2ob01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
A NHC-catalyzed homoenolate addition reaction between enals and iminochromenes to yields of a new type of C4-functionalized 2-amino-4H-chromenes has been developed.
Collapse
Affiliation(s)
- Pushpendra Mani Shukla
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| |
Collapse
|
8
|
Soares MIL, Gomes CSB, Oliveira MC, Marçalo J, Pinho E Melo TMVD. Synthesis of 5 H-chromeno[3,4- b]pyridines via DABCO-catalyzed [3 + 3] annulation of 3-nitro-2 H-chromenes and allenoates. Org Biomol Chem 2021; 19:9711-9722. [PMID: 34726223 DOI: 10.1039/d1ob01130h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DABCO-catalyzed [3 + 3] annulation between 3-nitro-2H-chromenes and benzyl 2,3-butadienoate has been developed as a route to 5H-chromeno[3,4-b]pyridine derivatives. Under optimal reaction conditions, 5H-chromeno[3,4-b]pyridines incorporating two allenoate units were obtained in moderate to good yields (30-76%). The same type of transformation could be carried out using butynoates as allene surrogates. Mechanistic studies by mass spectrometry allowed the identification of the key intermediates involved in the reaction mechanism. The reported synthetic methodology represents an entirely new approach for the synthesis of the 5H-chromeno[3,4-b]pyridine core structure based on allene chemistry.
Collapse
Affiliation(s)
- Maria I L Soares
- University of Coimbra, Coimbra Chemistry Centre (CQC) and Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Clara S B Gomes
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,UCIBIO, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre (CQC) and Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
9
|
Matloubi Moghaddam F, Goudarzi M, Mohammadzadeh Dezag H. A novel and efficient four-component synthesis of chromen–based dithiocarbamate derivatives by homogeneous catalysts under solvent-free conditions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1910303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mehri Goudarzi
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Hamid Mohammadzadeh Dezag
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Liu B, Song R, Xu J, Majhi PK, Yang X, Yang S, Jin Z, Chi YR. Access to Optically Enriched α-Aryloxycarboxylic Esters via Carbene-Catalyzed Dynamic Kinetic Resolution and Transesterification. Org Lett 2020; 22:3335-3338. [PMID: 32290663 DOI: 10.1021/acs.orglett.0c00748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optically active α-aryloxycarboxylic acids and their derivatives are important functional molecules. Disclosed here is a carbene-catalyzed dynamic kinetic resolution and transesterification reaction for access to this class of molecules with up to 99% yields and 99:1 er values. Addition of a chiral carbene catalyst to the ester substrate leads to two diastereomeric azolium ester intermediates that can quickly epimerize to each other and thus allows for effective dynamic kinetic resolution to be realized. The optically enriched ester products from our reaction can be quickly transformed to chiral herbicides and other bioactive molecules.
Collapse
Affiliation(s)
- Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Runjiang Song
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Pankaj Kumar Majhi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Song Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
11
|
Bu HZ, Li HH, Luo WF, Luo C, Qian PC, Ye LW. Synthesis of 2 H-Chromenes via Unexpected [4 + 2] Annulation of Alkynyl Thioethers with o-Hydroxybenzyl Alcohols. Org Lett 2019; 22:648-652. [PMID: 31887060 DOI: 10.1021/acs.orglett.9b04421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel Brønsted acid-catalyzed reaction of alkynyl thioethers with o-hydroxybenzyl alcohols via an unexpected formal [4 + 2] annulation has been developed. This metal-free protocol leads to the facile and practical synthesis of valuable polysubstituted 2H-chromenes in mostly good to excellent yields under mild reaction conditions and features a wide substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Hao-Zhen Bu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hang-Hao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Wen-Feng Luo
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Chen Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,State Key Laboratory of Organometallic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|