1
|
Wu XD, Wang L, Tao JY, Liu ZY, Liu Z, Gao C, Shen DP, Zhang Y, Zhao LL, Zhao K. Photoredox-Catalyzed Direct C(sp 2)-H Difluoromethylation of Hydrazones with Difluoromethyltriphenylphosphonium Salt via Aminyl Radical/Polar Crossover. Org Lett 2025; 27:4176-4182. [PMID: 40208009 DOI: 10.1021/acs.orglett.5c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
This study describes an efficacious and generally applicable synthetic strategy for the incorporation of biologically and physiologically prominent difluoromethyl entity into synthetically crucial hydrazone scaffolds with bench-stable and easily accessible difluoromethyltriphenylphosphonium bromide. The broad substrate scope, excellent functional group compatibility, feasibility of step and atom economical one-pot synthetic manipulation, and environmentally benign and mild reaction conditions rendered this methodology an efficient tool for the preparation of synthetically and pharmaceutically prominent fluorine-containing imino compounds.
Collapse
Affiliation(s)
- Xiao-Di Wu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Li Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ji-Yu Tao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhen-Yu Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zeng Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Gao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong-Ping Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Li Zhao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Zhao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Kim S, Kim H. Cu-Electrocatalysis Enables Vicinal Bis(difluoromethylation) of Alkenes: Unraveling Dichotomous Role of Zn(CF 2H) 2(DMPU) 2 as Both Radical and Anion Source. J Am Chem Soc 2024; 146:22498-22508. [PMID: 39079933 DOI: 10.1021/jacs.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The difluoromethyl group (CF2H) serves as an essential bioisostere in drug discovery campaigns according to Lipinski's Rule of 5 due to its advantageous combination of lipophilicity and hydrogen bonding ability, thereby improving the ADME properties. However, despite the high prevalence and importance of vicinal hydrogen bond donors in pharmaceutical agents, a general synthetic method for doubly difluoromethylated compounds in the vicinal position is absent. Here we describe a copper-electrocatalyzed strategy that enables the vicinal bis(difluoromethylation) of alkenes. By leveraging electrochemistry to oxidize Zn(CF2H)2(DMPU)2-a conventionally utilized anionic transmetalating source, we paved a way to utilize it as a CF2H radical source to deliver the CF2H group in the terminal position of alkenes. Mechanistic studies revealed that the interception of the resultant secondary radical by a copper catalyst and subsequent reductive elimination is facilitated by invoking the Cu(III) intermediate, enabling the second installation of the CF2H group in the internal position. The utility of this electrocatalytic 1,2-bis(difluoromethylation) strategy has been highlighted through the late-stage bioisosteric replacement of pharmaceutical agents such as sotalol and dipivefrine.
Collapse
Affiliation(s)
- Seonyoung Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Zhu X, Zhang M, Shen L, Su W. Visible-Light-Induced Hydrodifluoromethylation of Unactivated Alkenes with Difluoroacetic Anhydride. J Org Chem 2024; 89:8828-8835. [PMID: 38848324 DOI: 10.1021/acs.joc.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
We herein described a practical and efficient protocol for hydrodifluoromethylation of unactivated alkenes using readily available difluoroacetic anhydride as a difluoromethyl source by merging photocatalysis and N-hydroxyphthalimide activation. This method features a wide substrate scope and excellent compatibility with various functional groups, as demonstrated by more than 50 examples, including bioactive molecules and pharmaceutical derivatives. Mechanism investigation indicated that N-hydroxyphthalimide may also serve as the hydrogen atom donor.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Min Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lujie Shen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weiping Su
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
4
|
Wang Y, Liu S, Huang Y. Photoredox/copper-catalyzed gem-difluoroalkylation-cyanation of 1,3-enynes. Org Biomol Chem 2024; 22:4895-4900. [PMID: 38826121 DOI: 10.1039/d4ob00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
A photoredox/copper-catalyzed 1,4-difunctionalization of 1,3-enynes with readily available difluoroalkylating reagents and TMSCN was developed. This reaction proceeded at mild conditions, affording the corresponding difluoroalkylated allenes in good yields with high functional-group tolerance and excellent regioselectivity.
Collapse
Affiliation(s)
- Yachen Wang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Shuai Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| |
Collapse
|
5
|
Ouyang Y, Qing FL. Photoredox Catalyzed Radical Fluoroalkylation with Non-Classical Fluorinated Reagents. J Org Chem 2024; 89:2815-2824. [PMID: 38385430 DOI: 10.1021/acs.joc.3c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The emergence of photocatalysis has greatly advanced radical fluoroalkylation reactions. Central to this advancement is the introduction and refinement of radical reagents, which play a pivotal role in driving these reactions forward. Intriguingly, some of these reagents, previously not recognized for their radical properties, have emerged as key players in this area. In this Perspective, we provide an overview of four representative reagents pioneered by our laboratory, which have subsequently garnered extensive application in broader research contexts, including difluorocarbene precursors bromodifluoromethylphosphonium bromide, electrophilic sulfonylation reagent triflic anhydride, and nucleophilic trifluoromethylation reagent methyl fluorosulfonyldifluoroacetate (Chen's reagent). The integration of phosphonium reagents, triflic anhydride, and methyl fluorosulfonyldifluoroacetate into photocatalysis has enabled some unexpected reactivities and now notably expanded the capabilities in radical difluoromethylation, trifluoromethylation, and difluoroalkylation. Our discussion highlights how these atypical reagents have enriched the toolkit available for radical fluoroalkylations, offering insights that could inspire future research and application in this area.
Collapse
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
6
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
7
|
Yedase GS, Arif M, Kuniyil R, Yatham VR. Photocatalytic Hydro Tri/Difluoromethylation of Alkenes with Bench Stable Tri/Difluoromethylating Reagents. Org Lett 2023; 25:6200-6205. [PMID: 37578816 DOI: 10.1021/acs.orglett.3c02413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we demonstrate the synthesis and characterization of bench stable tri/difluoromethylating reagents and their potential applications in redox neutral hydro tri/difluoromethylation of alkenes enabled by visible light. The new tri/difluoromethylating reagents are obtained on a gram-scale through simply cyclocondensation of commercially available anthranilamide with phenyltrifluoro or difluoromethyl ketone. Preliminary mechanistic studies indicated that a canonical photoredox catalytic cycle is being operative. DFT studies support this and further reveal that deprotonation occurs before radical cleavage. DFT studies also show that the better yield with HCF2 reagent is attributed to the favorable expulsion of the corresponding radical moiety.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Munaifa Arif
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
8
|
Pan S, Chen F, Zhang Y, Shao L, Chu L. Nickel-Catalyzed Markovnikov-Selective Hydrodifluoromethylation of Alkynes Using BrCF 2 H. Angew Chem Int Ed Engl 2023; 62:e202305426. [PMID: 37293885 DOI: 10.1002/anie.202305426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
A Markovnikov-selective hydrodifluoromethylation of alkynes with BrCF2 H via nickel catalysis is described. This protocol proceeds via a migratory insertion of nickel hydride to alkyne followed by a CF2 H-coupling, enabling straightforward access to diverse branched CF2 H-alkenes with high efficiency and exclusive regioselectivity. The mild condition applies to a wide array of aliphatic and aryl alkynes with good functional group compatibility. Mechanistic studies are presented to support the proposed pathway.
Collapse
Affiliation(s)
- Shiwei Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Yanyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Liang Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
9
|
Wang J, Luo Z, Wu Y, Tang Y, Yang X, Tsui GC. Copper-Catalyzed Visible-Light-Induced Allylic Difluoromethylation of Unactivated Alkenes Using Difluoroacetic Acid. Org Lett 2023; 25:1045-1049. [PMID: 36752311 DOI: 10.1021/acs.orglett.3c00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We herein describe a straightforward allylic difluoromethylation reaction of unactivated alkenes. Compared to cross-couplings of prefunctionalized allylic substrates for the construction of allylic CF2H bonds, this reaction employs readily available alkenes as substrates under mild conditions. Difluoroacetic acid is used as an inexpensive and easy-to-handle source of CF2H radical under visible light irradiation with PIDA. The copper catalyst plays an important role of diverting the reaction pathway toward allylic difluoromethylation as opposed to previously found hydrodifluoromethylation.
Collapse
Affiliation(s)
- Jinlian Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ziwei Luo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yili Wu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yihan Tang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xinkan Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
10
|
Liao L, Zhang Y, Wu ZW, Ye ZT, Zhang XX, Chen G, Yu JS. Nickel-catalyzed regio- and enantio-selective Markovnikov hydromonofluoroalkylation of 1,3-dienes. Chem Sci 2022; 13:12519-12526. [PMID: 36382272 PMCID: PMC9629049 DOI: 10.1039/d2sc03958c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
A highly enantio- and regio-selective Markovnikov hydromonofluoro(methyl)alkylation of 1,3-dienes was developed using redox-neutral nickel catalysis. It provided a facile strategy to construct diverse monofluoromethyl- or monofluoroalkyl-containing chiral allylic molecules. Notably, this represents the first catalytic asymmetric Markovnikov hydrofluoroalkylation of olefins. The practicability of this methodology is further highlighted by its broad substrate scope, mild base-free conditions, excellent enantio- and regio-selectivity, and diversified product elaborations to access useful fluorinated building blocks.
Collapse
Affiliation(s)
- Ling Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| |
Collapse
|
11
|
Zhang FX, Lin JH, Xiao JC. Difluoromethylsulfonyl Imidazolium Salt for Difluoromethylation of Alkenes. Org Lett 2022; 24:7611-7616. [PMID: 36201292 DOI: 10.1021/acs.orglett.2c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the design and synthesis of a difluoromethylsulfonyl imidazolium salt, which can act as a radical difluoromethylation reagent to achieve the challenging amino- and oxy-difluoromethylation of alkenes. Notably, the three steps for the synthesis of the imidazolium salt do not require any tedious distillation or column chromatography purification process, and the amino- and oxy-difluoromethylation paths are simply determined by the selection of reaction solvents.
Collapse
Affiliation(s)
- Feng-Xu Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
12
|
Li P, Liu Q, Sun DQ, Chen XY. Catalytic charge transfer complex enabled difluoromethylation of enamides with difluoromethyltriphenylphosphonium bromide. Org Biomol Chem 2022; 20:7599-7603. [PMID: 36148776 DOI: 10.1039/d2ob01539k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic charge transfer complex strategy that enabled difluoromethylation and ethoxycarbonylmonofluoromethylation of enamides with phosphonium bromine salts has been reported. This strategy also provides a convenient approach for the synthesis of functionalized oxindoles and 1,1-diphenylethylenes with easily available phosphonium bromine salts and a catalytic amount of iodine anion.
Collapse
Affiliation(s)
- Ping Li
- School of life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - De-Qun Sun
- School of life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
13
|
Kim S, Hwang KH, Park HG, Kwak J, Lee H, Kim H. Radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Commun Chem 2022; 5:96. [PMID: 36697867 PMCID: PMC9814520 DOI: 10.1038/s42004-022-00697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 01/28/2023] Open
Abstract
Due to its superior ability in controlling pharmaceutical activity, the installation of difluoromethyl (CF2H) functionality into organic molecules has been an area of intensive research. In this context, difluoromethylation of C-C π bonds mediated by a CF2H radical have been pursued as a central strategy to grant access to difluoromethylated hydrocarbons. However, early precedents necessitate the generation of oxidative chemical species that can limit the generality and utility of the reaction. We report here the successful implementation of radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Preliminary mechanistic investigations suggest that the key distinction of the present strategy originates from the reconciliation of multiple redox processes under highly reducing electrochemical conditions. The reaction conditions can be chosen based on the electronic properties of the alkenes of interest, highlighting the hydrodifluoromethylation of both unactivated and activated alkenes. Notably, the reaction delivers geminal (bis)difluoromethylated products from alkynes in a single step by consecutive hydrodifluoromethylation, granting access to an underutilized 1,1,3,3-tetrafluoropropan-2-yl functional group. The late-stage hydrodifluoromethylation of densely functionalized pharmaceutical agents is also presented.
Collapse
Affiliation(s)
- Seonyoung Kim
- grid.255649.90000 0001 2171 7754Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Keon Ha Hwang
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Hyeong Gyu Park
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Jaesung Kwak
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyuk Lee
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyunwoo Kim
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
14
|
Zhang ZQ, Sang YQ, Wang CQ, Dai P, Xue XS, Piper JL, Peng ZH, Ma JA, Zhang FG, Wu J. Difluoromethylation of Unactivated Alkenes Using Freon-22 through Tertiary Amine-Borane-Triggered Halogen Atom Transfer. J Am Chem Soc 2022; 144:14288-14296. [PMID: 35895322 DOI: 10.1021/jacs.2c05356] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of abundant and inexpensive fluorine feedstock sources to synthesize fluorinated compounds is an appealing yet underexplored strategy. Here, we report a photocatalytic radical hydrodifluoromethylation of unactivated alkenes with an inexpensive industrial chemical, chlorodifluoromethane (ClCF2H, Freon-22). This protocol is realized by merging tertiary amine-ligated boryl radical-induced halogen atom transfer (XAT) with organophotoredox catalysis under blue light irradiation. A broad scope of readily accessible alkenes featuring a variety of functional groups and drug and natural product moieties could be selectively difluoromethylated with good efficiency in a metal-free manner. Combined experimental and computational studies suggest that the key XAT process of ClCF2H is both thermodynamically and kinetically favored over the hydrogen atom transfer pathway owing to the formation of a strong boron-chlorine (B-Cl) bond and the low-lying antibonding orbital of the carbon-chlorine (C-Cl) bond.
Collapse
Affiliation(s)
- Zhi-Qi Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yue-Qian Sang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
| | - Cheng-Qiang Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Peng Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
| | - Jared L Piper
- Pfizer Worldwide Research and Development Medicine, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Zhi-Hui Peng
- Pfizer Worldwide Research and Development Medicine, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Jun-An Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Fa-Guang Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Jie Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
15
|
Visible-light-induced direct hydrodifluoromethylation of alkenes with difluoromethyltriphenylphosphonium iodide salt. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Li M, Li Y, Jia WY, Sun GQ, Gao F, Zhao GX, Qiu YF, Wang XC, Liang YM, Quan ZJ. Directed Copper-Catalyzed Tandem Radical Cyclization Reaction of Alkyl Bromides and Unactivated Olefins. Org Lett 2022; 24:2738-2743. [PMID: 35357833 DOI: 10.1021/acs.orglett.2c00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free radical cyclization reaction is a promising strategy for ring framework formation. Herein, we report a copper-catalyzed tandem radical cyclization strategy for preparing substituted lactam derivatives. This reaction proceeds through a radical coupling approach, which not only allows a wide range of alkenes but also is quite compatible with the primary, secondary, and tertiary radicals. In addition, density functional theory calculations were performed to gain insights into the reaction mechanism.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Wan-Yuan Jia
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Qing Sun
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Xiao Zhao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
17
|
Zhu YY, Liu S, Huang Y, Qing FL, Xu XH. Photoredox catalyzed difluoro(phenylthio)methylation of 2,3-allenoic acids with {difluoro(phenylthio)methyl}triphenylphosphonium triflate. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
19
|
Liu Q, Lu Y, Sheng H, Zhang C, Su X, Wang Z, Chen X. Visible‐Light‐Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Lu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - He Sheng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao‐Shen Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Di Su
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Xiang Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐Yu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Liu Q, Lu Y, Sheng H, Zhang CS, Su XD, Wang ZX, Chen XY. Visible-Light-Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew Chem Int Ed Engl 2021; 60:25477-25484. [PMID: 34490742 DOI: 10.1002/anie.202111006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/09/2022]
Abstract
The sigma (σ)-hole effect has emerged as a promising tool to construct novel architectures endowed with new properties. A simple yet effective strategy for the generation of monofluoromethyl radicals is a continuing challenge within the synthetic community. Fluoromethylphosphonium salts are easily available, air- and thermally stable, as well as simple-to-handle. Herein, we report the ability of the σ-hole effect to facilitate the visible-light-triggered photolysis of phosphonium iodide salts, a charge-transfer complex, selectively giving fluoromethyl radicals. The usefulness and versatility of this new protocol are demonstrated through the mono-, di-, and trifluoromethylation of a variety of alkenes.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Sheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Shen Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Kamal A, Singh HK, Kumar D, Maury SK, Kumari S, Srivastava V, Singh S. Visible Light‐Induced Cu‐Catalyzed Synthesis of Schiff's Base of 2‐ Amino Benzonitrile Derivatives and Acetophenones. ChemistrySelect 2021. [DOI: 10.1002/slct.202003950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arsala Kamal
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Himanshu Kumar Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Dhirendra Kumar
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Suresh Kumar Maury
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Savita Kumari
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Vandana Srivastava
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Sundaram Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| |
Collapse
|
22
|
Shao Z, Zhou Q, Wang J, Tang R, Shen Y. Sodium Iodide-Triphenylphosphine-Mediated Photoredox Alkylation of Aldimines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020; 60:4300-4306. [DOI: 10.1002/anie.202014587] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
24
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
25
|
Markovnikov-Type Hydrotrifluoromethylchalcogenation of Unactivated Terminal Alkenes with [Me 4N][XCF 3] (X = S, Se) and TfOH. Molecules 2020; 25:molecules25194535. [PMID: 33022964 PMCID: PMC7582815 DOI: 10.3390/molecules25194535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
The first Markovnikov-type hydrotrifluoromethylselenolation of unactivated terminal alkenes with the readily accessible [Me4N][SeCF3] reagent and the superacid TfOH is reported. The reaction proceeded at room temperature under catalyst- and additive-free conditions to give the branched trifluoromethylselenolated products in good yields. This protocol is also applicable to the Markovnikov-type hydrotrifluoromethylthiolation of unactivated terminal alkenes using [Me4N][SCF3]/TfOH, but not to the hydrotrifluoromethoxylation with CsOCF3/TfOH under the same conditions. The successful hydrotrifluoromethylselenolation and hydrotrifluoromethylthiolation showed simplicity and high regioselectivity, taming the sensitive −XCF3 (X = Se, S) anions with TfOH, and offered a convenient method for the straightforward synthesis of branched trifluoromethyl selenoethers and thioethers from unactivated alkenes.
Collapse
|
26
|
Wang J, Shao Z, Tan K, Tang R, Zhou Q, Xu M, Li YM, Shen Y. Synthesis of Amino Acids by Base-Enhanced Photoredox Decarboxylative Alkylation of Aldimines. J Org Chem 2020; 85:9944-9954. [DOI: 10.1021/acs.joc.0c01246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiancheng Wang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziyan Shao
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Kai Tan
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rui Tang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingli Zhou
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Min Xu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ya-Min Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuehai Shen
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
27
|
Wu N, Huang Y, Xu X, Qing F. Copper‐Catalyzed Hydrodifluoroallylation of Terminal Alkynes to Access (
E
)‐1,1‐Difluoro‐1,4‐Dienes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nuo‐Yi Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Feng‐Ling Qing
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|