1
|
Gao J, Cui Y, Yin J, Wang X, Wei X, Zhang J, He D, Suo H, Ding L, Zhao C. Pre-enrichment-free electrochemical detection of lead ions using functionalized tungsten oxide: Integration of surface functionalization and redox cycling mechanisms. Talanta 2025; 292:127923. [PMID: 40073822 DOI: 10.1016/j.talanta.2025.127923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Methods for electrochemical detection of heavy metal ions have garnered widespread attention due to their high sensitivity, ease of operation, low cost, and suitability for on-site detection. However, these methods typically require a pre-enrichment step to improve the detection limit and sensitivity, which increases operational complexity and introduces potential errors. In this study, tungsten oxide electrodes with various functional groups were prepared by electrodeposition and high-temperature annealing, utilizing the amphoteric properties of l-alanine. The proposed electrodes exhibited high-performance Pb2+ sensing, with a sensitivity of 26.20 μA μM-1 cm-2, without pre-enrichment. Experimental results demonstrated that the electrode not only possesses excellent anti-interference capability and good reproducibility but also exhibits high accuracy and recovery rates in detecting actual water samples. This pioneering detection strategy harnesses tungsten's valence properties and surface functional groups' adsorption capacity to detect Pb2+ directly. The method is simple, rapid, and efficient, making it suitable for routine monitoring of heavy metal ions in complex environments. This innovative approach holds significant promise for a wide range of applications in environmental monitoring.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Yuanyuan Cui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Jun Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Xiangyue Wang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130000, PR China
| | - Xiaofeng Wei
- College of Chemistry, Jilin University, Changchun, 130000, PR China
| | - Jingwen Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Dong He
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Hui Suo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China
| | - Lan Ding
- College of Chemistry, Jilin University, Changchun, 130000, PR China.
| | - Chun Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
2
|
Gayathri J, Roniboss A, Sivalingam S, Sangeetha Selvan K. Electrochemical sensing of Hg(ii) in chicken liver and snail shell extract samples using novel modified SDA/MWCNT electrodes. RSC Adv 2024; 14:16056-16068. [PMID: 38769970 PMCID: PMC11103563 DOI: 10.1039/d4ra00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Heavy metal ions (Hg(ii)) were detected in fresh chicken liver and snail shell extract samples using novel synthesised SDA/MWCNT-modified electrodes. The synthesized N,N'-bis(salicylaldehyde)-1,2-diaminobenzene (SDA) ligand was characterized via FT-IR, 1H-NMR, and 13C-NMR spectroscopy. The hydroxyl and imine functional groups present in SDA act as active sites and bind to the MWCNT surface. The surface morphology of the modified SDA/MWCNT electrode exhibited a star-like crystal structure and the preconcentration of Hg(ii)-SDA/MWCNTs lead to a crystal cloud structure, as characterized by SEM with EDX. The enhancement of current and conductance of the SDA/MWCNT- and MWCNT-modified electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The conductance (σ) values for the MWCNT- and SDA/MWCNT-modified electrodes are 234.1 × 10-5 S cm-1 and 358.4 × 10-5 S cm-1, respectively, as determined by electrochemical impedance spectroscopy. Consequently, an electrochemical sensor with outstanding performance in terms of reproducibility, stability and anti-interference ability was fabricated. The stripping analysis of Hg(ii) was performed using square wave anodic stripping voltammetry (SWASV) and cyclic voltammetry (CV). Using SWASV, a linear range of Hg(ii) response was found to be 1.3 to 158 μg L-1, and the limit of detection (LOD) was 0.24 μg L-1. Finally, the results of the recovered value of Hg(ii) in freshly prepared chicken liver and snail shell extract samples by SWASV were compared with the atomic absorption spectroscopy (AAS) results.
Collapse
Affiliation(s)
- Jayagopi Gayathri
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - A Roniboss
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - Sivakumar Sivalingam
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - Kumar Sangeetha Selvan
- Department of Chemistry, Anna Adarsh College for Women Anna Nagar Chennai Tamil Nadu 600040 India
| |
Collapse
|
3
|
Xhanari K, Finšgar M. Recent advances in the modification of electrodes for trace metal analysis: a review. Analyst 2023; 148:5805-5821. [PMID: 37697964 DOI: 10.1039/d3an01252b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This review paper summarizes the research published in the last five years on using different compounds and/or materials as modifiers for electrodes employed in trace heavy metal analysis. The main groups of modifiers are identified, and their single or combined application on the surface of the electrodes is discussed. Nanomaterials, film-forming substances, and polymers are among the most used compounds employed mainly in the modification of glassy carbon, screen-printed, and carbon paste electrodes. Composites composed of several compounds and/or materials have also found growing interest in the development of modified electrodes. Environmentally friendly substances and natural products (mainly biopolymers and plant extracts) have continued to be included in the modification of electrodes for trace heavy metal analysis. The main analytical performance parameters of the modified electrodes as well as possible interferences affecting the determination of the target analytes, are discussed. Finally, a critical evaluation of the main findings from these studies and an outlook discussing possible improvements in this area of research are presented.
Collapse
Affiliation(s)
- Klodian Xhanari
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
- University of Tirana, Faculty of Natural Sciences, Boulevard "Zogu I", 1001 Tirana, Albania
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
4
|
Khaleque M, Bacchu M, Ali M, Hossain M, Mamun M, Hossain M, Khan M. Copper oxide nanoflowers/poly-l-glutamic acid modified advanced electrochemical sensor for selective detection of l-tryptophan in real samples. Heliyon 2023; 9:e16627. [PMID: 37292289 PMCID: PMC10245068 DOI: 10.1016/j.heliyon.2023.e16627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
The main objective of this research work is to develop a low-cost sensor to detect l-tryptophan (L-tryp) in real sample medium based on a modified glassy carbon electrode. For this, copper oxide nanoflowers (CuONFs) and poly-l-glutamic acid (PGA) were used to modify GCE. The prepared NFs and PGA coated electrode was characterized using field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, the electrochemical activity was performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The modified electrode showed excellent electro-catalytic activity towards L-tryp detection in PBS solution at neutral pH 7.0. Based on the physiological pH condition, the proposed electrochemical sensor can detect L-tryp concentration with a linear range of 1.0 × 10-4-8.0 × 10-8 molL-1 with having a detection limit of 5.0 × 10-8 molL-1 and sensitivity of 0.6μA/μMcm2. The selectivity of L-tryp was tested with a mixture of salt and uric acid solution at the above conditions. Finally, this strategy demonstrated excellent recovery value in real sample analysis like milk and urine.
Collapse
Affiliation(s)
- M.A. Khaleque
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.S. Bacchu
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.R. Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.S. Hossain
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.R.A. Mamun
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.I. Hossain
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.Z.H. Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
5
|
Simultaneous electrochemical detection of multiple heavy metal ions in milk based on silica-modified magnetic nanoparticles. Food Chem 2023; 406:135034. [PMID: 36459793 DOI: 10.1016/j.foodchem.2022.135034] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
A sensitive and simple analytical method integrated with Fe3O4@SiO2-based extraction with direct electrochemical detection was applied to individually and simultaneously analyze heavy metal ions, including Cd2+, Pb2+, Cu2+, and Hg2+. The Fe3O4@SiO2-based electrochemical sensor was developed through the mixture of heavy metal ions with Fe3O4@SiO2 after alkali treatment, which was modified onto the working electrode surface. The Fe3O4@SiO2 with negative charges after alkali treatment could easily interact with heavy metal ions with positive charges by electrostatic force. Under the optimized conditions, the developed analytical method could be applied to individually and simultaneously detect heavy metal ions with good sensitivity. The detection limits were all in the nanomolar range, and the recoveries ranged from 96.0 to 104.3% for heavy metal ions in milk. Therefore, the proposed analytical method exhibited great potential for quantitatively analyzing multiple heavy metal ions in milk.
Collapse
|
6
|
The innovative and accurate detection of heavy metals in foods: A critical review on electrochemical sensors. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Ghafoor M, Khan ZU, Nawaz MH, Akhtar N, Rahim A, Riaz S. In-situ synthesized ZIF-67 graphene oxide (ZIF-67/GO) nanocomposite for efficient individual and simultaneous detection of heavy metal ions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:423. [PMID: 36813857 DOI: 10.1007/s10661-023-10966-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals are ubiquitous in water bodies as a result of anthropogenic activities and over time they accumulate in body thus posing serious health problems. Therefore, it is essential to improve sensing performance, for determination of heavy metal ions (HMIs), of electrochemical sensors. In this work, cobalt-derived MOF (ZIF-67) was in-situ synthesized and incorporated onto the surface of graphene oxide (GO) by simple sonication method. The prepared material (ZIF-67/GO) was characterized by FTIR, XRD, SEM, and Raman spectroscopy. Afterwards, a sensing platform was made by drop-casting synthesized composite onto glassy carbon electrode for individual and simultaneous detection of heavy metal ions pollutants (Hg2+, Zn2+, Pb2+, and Cr3+) with estimated detection limits of 2 nM, 1 nM, 5 nM, and 0.6 nM, respectively, when determined simultaneously, that are below the permissible limit by World Health Organization. To the best of our knowledge, this is first report of HMIs detection by ZIF-67 incorporated GO sensor which can successfully determine the Hg+2, Zn+2, Pb+2, and Cr+3 ions simultaneously with lower detection limits.
Collapse
Affiliation(s)
- Mariam Ghafoor
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Zaib Ullah Khan
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | | | - Naeem Akhtar
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan, 60800, Pakistan
| | - Abdur Rahim
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
- Department of Chemistry, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| |
Collapse
|
8
|
A facile electrochemical sensor based on amino-functionalized magnetic nanoparticles for simultaneous detection of lead and mercuric ions. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
Huang R, Lv J, Chen J, Zhu Y, Zhu J, Wågberg T, Hu G. Three-dimensional porous high boron-nitrogen-doped carbon for the ultrasensitive electrochemical detection of trace heavy metals in food samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130020. [PMID: 36155296 DOI: 10.1016/j.jhazmat.2022.130020] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 05/29/2023]
Abstract
Exposure to even trace amounts of Cd(II) and Pb(II) in food can have serious effects on the human body. Therefore, the development of novel electrochemical sensors that can accurately detect the different toxicity levels of heavy metal ions in food is of great significance. Based on the principle of green chemistry, we propose a new type of boron and nitrogen co-doped carbon (BCN) material derived from a metal-organic framework material and study its synthesis, characterization, and heavy-metal ion detection ability. Under the optimum conditions, the BCN-modified glassy carbon electrode was studied using square-wave anodic stripping voltammetry, which showed good electrochemical responses to Cd(II) and Pb(II), with sensitivities as low as 0.459 and 0.509 μA/μM cm2, respectively. The sensor was successfully used to detect Cd(II) and Pb(II) in Beta vulgaris var. cicla L samples, which is consistent with the results obtained using inductively coupled plasma-mass spectrometry. It also has a strong selectivity for complex samples. This study provides a novel approach for the detection of heavy metal ions in food and greatly expands the application of heteroatom-doped metal-free carbon materials in detection platforms.
Collapse
Affiliation(s)
- Ruihua Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Yeling Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Department of Physics, Umeå University, Umeå 901 87, Sweden.
| |
Collapse
|
10
|
Vasanthi Sridharan N, Mandal BK. Simultaneous Quantitation of Lead and Cadmium on an EDTA-Reduced Graphene Oxide-Modified Glassy Carbon Electrode. ACS OMEGA 2022; 7:45469-45480. [PMID: 36530323 PMCID: PMC9753498 DOI: 10.1021/acsomega.2c06080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) and lead (Pb) are classified as category one toxicants. The provisional guideline values, according to the World Health Organization (WHO), for Cd and Pb are 3 and 10 ppb, respectively. An easy, quick, and cheap analytical technique is in demand for the determination of these toxic heavy metals in water. Hence, a novel electrochemical sensing platform is developed by modifying the glassy carbon electrode with ethylenediaminetetraacetic acid (EDTA)-functionalized reduced graphene oxide (ErGO) for the low-cost simultaneous quantitation of toxic heavy-metal ions, lead and cadmium, in real water samples. EDTA is grafted to the surface of graphene oxide, via amine linkage, and the oxygen functionality is reduced by a green agent, tyrosine. Various physical and electrochemical characterizations of the as-prepared electrocatalytic material were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), ζ-potential, ultraviolet diffuse reflectance spectroscopy (UV-DRS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), etc. The glassy carbon electrode (GCE) is modified with ErGO by a simple drop-casting method for simultaneous metal-ion quantitation by differential pulse voltammetry (DPV). EDTA functionalization of graphene oxide and its further reduction using the green agent enhance the stability and sensitivity of the electrode substrate. The limits of detection for cadmium and lead ions calculated for ErGO/GCE are 1.02 and 2.52 ppb, while the limits of quantification for lead and cadmium ions are 3.41 and 8.4 ppb, and their sensitivities are 0.8 and 0.6 nA/ppb, respectively. Real river water contains 200.2 ± 0.38 ppb of Pb2+ ions (mean ± stdev, n = 3) by the DPV technique, which is validated by ICP-OES analysis.
Collapse
|
11
|
Electrochemical Polymerisation of Glutamic Acid on the Surface of Graphene Paste Electrode for the Detection and Quantification of Rutin in Food and Medicinal Samples. Diagnostics (Basel) 2022; 12:diagnostics12123113. [PMID: 36553121 PMCID: PMC9777661 DOI: 10.3390/diagnostics12123113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Rutin (RU) is one of the best-known natural antioxidants with various physiological functions in the human body and other plant species. In this work, an efficient voltammetric sensor to detect RU in food samples was explicated using a poly (glutamic acid)-modified graphene paste electrode (PGAMGPE). In order to detect RU, the proposed sensor diminishes material resistance and overpotential while increasing kinetic rate, peak currents, and material conductance. Using differential pulse voltammetry (DPV) and cyclic voltammetry (CV), the analysing efficiency of a PGAMGPE and a Bare graphene paste electrode (BGPE) was evaluated in 0.2 M phosphate buffer (PB) at an ideal pH of 6.5. in a potential window of -0.25 V to 0.6 V. Electrochemical impedance spectroscopy (EIS) was used to analyse the prepared electrode materials' conductivity, charge transfer resistance, and the kinetics of electron transport. Field emission scanning electron microscopy (FE-SEM) images were considered to compare the exterior morphology of the PGAMGPE and the BGPE. It was discovered that the PGAMGPE and the BGPE have electroactive surfaces of 0.062 cm2 and 0.04 cm2, respectively. It was determined that two protons and two electrons participated in the redox process. The resultant limit of detection (LOD) was found to be 0.04 µM and 0.06 µM, respectively, using DPV and CV methods. In spite of common interferents such as metal ions and chemical species, the developed sensor's selectivity for RU detection was impressive. For the simultaneous analysis of RU in the presence of caffeine (CF), the PGAMGPE affords a good electrochemical nature for RU with good selectivity. Due to the good stability, repeatability, reproducibility, and ease of use of the present RU sensor, it is useful for real sample analysis such as food and medicinal samples with recovery ranging from 94 to 100%.
Collapse
|
12
|
Song H, Huo M, Zhou M, Chang H, Li J, Zhang Q, Fang Y, Wang H, Zhang D. Carbon Nanomaterials-Based Electrochemical Sensors for Heavy Metal Detection. Crit Rev Anal Chem 2022; 54:1987-2006. [PMID: 36463557 DOI: 10.1080/10408347.2022.2151832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Heavy metals are commonly found in a wide range of environmental settings metals, but the potential toxicity associated with heavy metal exposure represents a major threat to global public health. It is thus vital that approaches to efficiently, reliably, and effectively detecting heavy metals in a range of sample types be established. Carbon nanomaterials offer many advantageous properties that make them well-suited to the design of sensitive, selective, easy-to-operate electrochemical biosensors ideal for detecting heavy metal ions. The present review offers an overview of recent progress in the development of carbon nanomaterial-based electrochemical sensors used to detect heavy metals. In addition to providing a detailed discussion of certain carbon nanomaterials such as carbon nanotubes, graphene, carbon fibers, carbon quantum dots, carbon nanospheres, mesoporous carbon, and Graphdiyne, we survey the challenges and future directions for this field. Overall, the studies discussed herein suggest that the further development of carbon nanomaterial-modified electrochemical sensors will support the integration of increasingly advanced sensor platforms to aid in detecting heavy metals in foods, environmental samples, and other settings, thereby benefitting human health and society as a whole.
Collapse
Affiliation(s)
- Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
13
|
Mini review: Electrochemical electrode based on graphene and its derivatives for heavy ion detection. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Ebrahimi P, Gholivand MB. Introduction of a new dichlorophen electrochemical sensor relying on the modified glassy carbon electrode (GCE) with carboxyl-functionalized graphene oxide/poly (L-arginine). J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Venkata Prasad G, Vinothkumar V, Joo Jang S, Eun Oh D, Hyun Kim T. Multi-walled carbon nanotube/graphene oxide/poly(threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Pei J, Ren T, Huang Y, Chen R, Jin W, Shang S, Wang J, Liu Z, Liang Y, Abd El-Aty AM. Application of Graphene and its Derivatives in Detecting Hazardous Substances in Food: A Comprehensive Review. Front Chem 2022; 10:894759. [PMID: 35864869 PMCID: PMC9295186 DOI: 10.3389/fchem.2022.894759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Graphene and its derivatives have been a burning issue in the last 10 years. Although many reviews described its application in electrochemical detection, few were focused on food detection. Herein, we reviewed the recent progress in applying graphene and composite materials in food detection during the past 10 years. We pay attention to food coloring materials, pesticides, antibiotics, heavy metal ion residues, and other common hazards. The advantages of graphene composites in electrochemical detection are described in detail. The differences between electrochemical detection involving graphene and traditional inherent food detection are analyzed and compared in depth. The results proved that electrochemical food detection based on graphene composites is more beneficial. The current defects and deficiencies in graphene composite modified electrode development are discussed, and the application prospects and direction of graphene in future food detection are forecasted.
Collapse
Affiliation(s)
- Jinjin Pei
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| | - Ting Ren
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yigang Huang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Rui Chen
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Wengang Jin
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Shufeng Shang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Jinze Wang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhe Liu
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yinku Liang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| |
Collapse
|
17
|
Ran Q, Sheng F, Chang G, Zhong M, Xu S. Sulfur-doped reduced graphene oxide@chitosan composite for the selective and sensitive electrochemical detection of Hg2+ in fish muscle. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Luo S, Kan X. A nanozyme-catalysis-based ratiometric electrochemical sensor for general detection of Cd 2+. Analyst 2022; 147:5437-5444. [DOI: 10.1039/d2an01480g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AuPt–rGO showed good peroxidase-like activity for the oxidation of OPD to DAP (a novel internal reference) and achieved sensitive and reliable detection of Cd2+ based on a ratiometric strategy.
Collapse
Affiliation(s)
- Shan Luo
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| |
Collapse
|
19
|
Tan X, Li Z, Wang X, Xu M, Yang M, Zhao J. Simultaneous determination of cadmium( ii), lead( ii), copper( ii) and mercury( ii) using an electrode modified by N/S co-doped graphene. NEW J CHEM 2022. [DOI: 10.1039/d2nj01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NSRG has superior sensitivity, selectivity, reproducibility, stability and practicality, exhibiting broad application prospects in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xu Tan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ziqing Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xixin Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Maodan Xu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Mengyao Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jianling Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
20
|
Xia Y, Ma Y, Wu Y, Yi Y, Lin H, Zhu G. Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti 3C 2T x MXene/carbon black. Mikrochim Acta 2021; 188:377. [PMID: 34643816 DOI: 10.1007/s00604-021-05042-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023]
Abstract
A proof-of-principle concept for free-electrodeposited anodic stripping voltammetry (ASV) sensing of Cu2+ is proposed by using Ti3C2Tx MXene/carbon black (Ti3C2Tx@CB) nanohybrids as electrode materials. Owing to the high adsorption and reduction capability of Ti3C2Tx towards Cu2+, Ti3C2Tx MXene enables Cu2+ to be immobilized and self-reduced directly to form Cu0 on the Ti3C2Tx@CB electrode surface. As a result an oxidation peak current appears from the re-oxidation of Cu0 via differential pulse voltammetry. Carbon black (CB) was introduced to prevent Ti3C2Tx Mxene aggregation and improve the related electron transfer as well as enhance their surface area. After optimizing various conditions, a considerable low limit of detection (4.6 nM) and a wide linear range (0.01-15.0 μM) for Cu2+ were achieved at the working potential from - 0.3 V to 0.0 V (vs SCE). Relative standard deviation (RSD) of eight individual Ti3C2Tx@CB electrodes is 3.72%, and the recoveries from tap water sample and lake water sample were in the ranges of 97.0-108% and 104-107%, respectively.
Collapse
Affiliation(s)
- Yixuan Xia
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuzhi Ma
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuntao Wu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China.,Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, Fuzhou, People's Republic of China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, Hunan, 410081, People's Republic of China
| | - Huiyu Lin
- Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, Fuzhou, People's Republic of China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, Fuzhou, People's Republic of China. .,Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, Fuzhou, People's Republic of China.
| |
Collapse
|
21
|
Qin Z, Su W, Liu P, Ma J, Zhang Y, Jiao T. Facile Preparation of a Rhodamine B Derivative-Based Fluorescent Probe for Visual Detection of Iron Ions. ACS OMEGA 2021; 6:25040-25048. [PMID: 34604683 PMCID: PMC8482772 DOI: 10.1021/acsomega.1c04206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 05/17/2023]
Abstract
Iron ions play an important role in our lives. Excessive or lack of iron ion intake leads to many diseases. At the same time, the water environment is easily polluted by these metal ions with the acceleration of industrialization. Therefore, the detection of iron ions in the water environment and the human body is particularly important. In this paper, we prepared a RhB-EDA fluorescent probe by condensing rhodamine B (RhB) with ethylenediamine (EDA) for high recognition of Fe3+. A RhB-EDA molecule itself is colorless and has no fluorescence emission in an alcohol solution. When Fe3+ was added, the lactam ring structure of the fluorescent probe opened, and the UV and fluorescence spectra changed. At the same time, the color of the mixed solution gradually deepened toward pink. Therefore, dual spectral detection and naked-eye observation of Fe3+ were realized. In addition, with the decrease of the pH value and the prolongation of chelating time, the ultraviolet absorbance and fluorescence emission intensity were enhanced and the color of the mixed solution deepened. The RhD-EDA fluorescent probe is simple and accurate and provides good technical support for the detection of Fe3+.
Collapse
Affiliation(s)
- Zhihui Qin
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Weiwei Su
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Ping Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jinming Ma
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Yaru Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| |
Collapse
|
22
|
Adauto A, Wong A, Khan S, Picasso G, Pilar Taboada Sotomayor M. A Selective Electrochemical Sensor for the Detection of Cd(II) Based on a Carbon Paste Electrode Impregnated with a Novel Ion‐imprinted Hybrid Polymer. ELECTROANAL 2021. [DOI: 10.1002/elan.202100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anais Adauto
- Laboratory of Physical Chemistry Research Faculty of Sciences National University of Engineering Av. Tupac Amaru 210, Rimac Lima Peru
| | - Ademar Wong
- Department of Analytical Chemistry Institute of Chemistry State University of São Paulo (UNESP) 14801-970 Araraquara SP Brazil
- National Institute for Alternative Technologies of Detection Toxicological Evaluation & Removal of Micropollutants and Radioactives (INCT-DATREM) Araraquara SP Brazil
| | - Sabir Khan
- Laboratory of Physical Chemistry Research Faculty of Sciences National University of Engineering Av. Tupac Amaru 210, Rimac Lima Peru
- Department of Analytical Chemistry Institute of Chemistry State University of São Paulo (UNESP) 14801-970 Araraquara SP Brazil
| | - Gino Picasso
- Laboratory of Physical Chemistry Research Faculty of Sciences National University of Engineering Av. Tupac Amaru 210, Rimac Lima Peru
| | - María Pilar Taboada Sotomayor
- Department of Analytical Chemistry Institute of Chemistry State University of São Paulo (UNESP) 14801-970 Araraquara SP Brazil
- National Institute for Alternative Technologies of Detection Toxicological Evaluation & Removal of Micropollutants and Radioactives (INCT-DATREM) Araraquara SP Brazil
| |
Collapse
|
23
|
Research Progress of Electrochemical Detection of Heavy Metal Ions. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60083-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Wang Y, Zhai W, Liu Y. Study on Cd
2+
Determination Using Bud‐like Poly‐L‐Tyrosine/Bi Composite Film Modified Glassy Carbon Electrode Combined with Eliminating of Cu
2+
Interference by Electrodeposition. ELECTROANAL 2020. [DOI: 10.1002/elan.202060213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yan‐Ru Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy South China Agricultural University Guangzhou 510642 P.R. China
| | - Wen‐Ying Zhai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy South China Agricultural University Guangzhou 510642 P.R. China
| | - You‐Qin Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy South China Agricultural University Guangzhou 510642 P.R. China
| |
Collapse
|
25
|
Yang Y, Wu W, Wang Z, Huang L, Ma X, Zhang Z, Xiang S. UiO‐66/GO Composites with Improved Electrochemical Properties for Effective Detection of Phosphite(P(III)) in Phosphate(P(V)) Buffer Solutions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Yang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Wangui Wu
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Ziyan Wang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Limei Huang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Xiuling Ma
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002 PR China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University 32 Shangshan Road Fuzhou 350007 PR China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002 PR China
| |
Collapse
|
26
|
kokab T, Shah A, Nisar J, Khan AM, Khan SB, Shah AH. Tripeptide Derivative-Modified Glassy Carbon Electrode: A Novel Electrochemical Sensor for Sensitive and Selective Detection of Cd 2+ Ions. ACS OMEGA 2020; 5:10123-10132. [PMID: 32391500 PMCID: PMC7203962 DOI: 10.1021/acsomega.0c00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/13/2020] [Indexed: 05/14/2023]
Abstract
A N-[(Benzyloxy)carbonyl]-l-alanyl-l-prolyl-l-leucine-N-cyclohexylcyclohexanamine (Cbz-APL) tripeptide-coated glassy carbon electrode (GCE)-based sensor was used for sensitive and selective recognition of cadmium ions in environmental water. Detailed cyclic voltammetric and electrochemical impedance spectroscopic studies were performed to investigate the charge transfer and sensing activity of the developed electrochemical sensor. Square wave anodic stripping voltammetry (SWASV) was employed to further investigate the sensitivity, selectivity, validity, and applicability of the developed sensor. A sharp electrochemical signal of oxidized Cd at -0.84 V versus Ag/AgCl provides evidence for the higher sensing ability of Cbz-APL/GCE than bare GCE at -0.79 V. Moreover, on Cbz-APL/GCE, extraordinary low detection limits of 4.34 fM and linearity range of 15 nM to 0.1 pM with coefficients of correlation higher than 0.99 for Cd2+ were achieved. Besides, the influence of inorganic and organic interferents on the targeted analyte signals was examined, and high selectivity of Cbz-APL/GCE for Cd2+ ions was observed. Lastly, the validity and applicability of the developed electrochemical sensor for the detection of Cd2+ ions were checked in real water samples, and 100% recovery was obtained.
Collapse
Affiliation(s)
- Tayyaba kokab
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir 32038, The Kingdom of Bahrain
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Asad Muhammad Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sher Bahadar Khan
- Department
of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia Kingdom
| | - Aamir Hassan Shah
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
27
|
Raril C, Manjunatha JG. Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-019-0194-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
This paper presents the application of polyglycine-modified graphene paste electrode (PGMGPE) for the electrochemical detection of Hg (II) and Pb (II) ions in the water and biological samples.
Method
The developed electrode was characterized by field emission scanning electron microscopy. Electrochemical techniques such as cyclic voltammetry and differential pulse voltammetry were used to study the behavior of metal ions.
Results
The modification process improves the electrochemical behavior of heavy metal ions. The peak current varied linearly with the increase of the concentration leading to a detection limit of 6.6 μM (Hg (II)) and 0.8 μM (Pb (II)), respectively.
Conclusion
The developed electrode exhibits good sensitivity, selectivity, stability, and lower detection limit, and was successfully applied to the determination of heavy metal ions in water and biological samples with a good recovery range.
Collapse
|
28
|
Kokab T, Shah A, Iftikhar FJ, Nisar J, Akhter MS, Khan SB. Amino Acid-Fabricated Glassy Carbon Electrode for Efficient Simultaneous Sensing of Zinc(II), Cadmium(II), Copper(II), and Mercury(II) Ions. ACS OMEGA 2019; 4:22057-22068. [PMID: 31891086 PMCID: PMC6933785 DOI: 10.1021/acsomega.9b03189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/22/2019] [Indexed: 06/01/2023]
Abstract
Herein, we present a greener approach to achieve an ultrasensitive, selective, and viable sensor engineered by amino acids as a recognition layer for simultaneous electrochemical sensing of toxic heavy metals (HMs). Electrochemical techniques like electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square-wave anodic stripping voltammetry (SWASV) were applied to demonstrate sensing capabilities of the designed analytical tool. The comparative results of different amino acids demonstrate alanine's superior performance with a well-resolved and enhanced current signal for target metal ions due to strong complexation of its functional moieties. The working conditions for alanine-modified GCE were optimized by investigating the effect of alanine concentration, different supporting electrolytes, pH values, accumulation potentials, and time. The limits of detection for Zn2+, Cd2+, Cu2+, and Hg2+ were found to be 8.92, 5.77, 3.01, and 5.89 pM, respectively. The alanine-modified electrode revealed absolute discrimination ability, stability, and ultrasensitivity toward metal ions even in the presence of multifold interfering species. Likewise, greener modifier-designed electrodes possessed remarkable electrocatalytic activity, cost affordability, reproducibility, and applicability for picomolar level detection of HM ions in real water sample matrixes. Theoretical calculations for the HM-amino acid interaction also support a significantly improved mediator role of the alanine modifier that is consistent with the experimental findings.
Collapse
Affiliation(s)
- Tayyaba Kokab
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir 32038, Bahrain
| | - Faiza Jan Iftikhar
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- NUTECH
School of Applied Sciences and Humanities, National University of Technology, Islamabad 44000, Pakistan
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohammad Salim Akhter
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir 32038, Bahrain
| | - Sher Bahadur Khan
- Department
of Chemistry, King Abdul Aziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|