1
|
Silkenath B, Kläge D, Eppelin P, Hartig JS, Wittmann V. Diverse Library of 5a-Substituted Carba-Glucosamines. J Org Chem 2025; 90:2969-2977. [PMID: 39954263 PMCID: PMC11877516 DOI: 10.1021/acs.joc.4c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Carba-sugars─carbohydrate mimics in which the ring oxygen is replaced by a methylene group─are carbohydrate analogues of natural or synthetic origin that can have important biological functions. Especially, carba-aminosugars and glycosides containing carba-aminosugars are potent antibiotics. Furthermore, they have been shown to induce the self-cleavage reaction of the glmS riboswitch and thereby inhibit the ability of bacteria to synthesize glucosamine-6-phosphate, which is required to build up the bacterial cell wall. We report the synthesis of a library of 20 carba-glucosamine derivatives with various substituents at the carba-position including amines, alkyl, alkoxy, and aryloxy derivatives, fluorine derivatives, glycosylated derivatives, and a cyclopropane derivative. The compounds were obtained in an efficient way starting from late-stage synthetic intermediates of an earlier-developed synthesis of carba-substituted carba-glucosamines. All carba-glucosamine mimics were tested for their antibacterial properties against Bacillus subtilis, and some of them displayed promising activities in a filter disk assay.
Collapse
Affiliation(s)
- Bjarne Silkenath
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Dennis Kläge
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Philip Eppelin
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
2
|
Banachowicz P, Buda S. General strategy for the synthesis of unsaturated carbasugars via a diastereoselective seleno-Michael/aldol reaction. RSC Adv 2025; 15:5159-5166. [PMID: 39967888 PMCID: PMC11833443 DOI: 10.1039/d5ra00322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Carbasugars are a diverse group of carbohydrate mimetics in which the ring oxygen is replaced by a methylene group. We have developed a simple and efficient carbasugar synthesis from d-aldopentoses via temporary protection of the hydroxyl moieties with TMS groups followed by consecutive intramolecular tandem Michael/aldol cyclisation. It is important to note that only the n-butylselenolate nucleophile is compatible with per-O-TMS-protected substrates. The desired products were obtained in five steps, with total yields reaching up to 40% with excellent diastereoselectivity of up to 19 : 1.
Collapse
Affiliation(s)
| | - Szymon Buda
- Faculty of Chemistry, Jagiellonian University Kraków 30-387 Poland
| |
Collapse
|
3
|
Vinaykumar A, Surender B, Rao BV. Chemoselective Nozaki-Hiyama-Takai-Kishi and Grignard reaction: short synthesis of some carbahexopyranoses. RSC Adv 2023; 13:22824-22830. [PMID: 37520087 PMCID: PMC10375257 DOI: 10.1039/d3ra03704e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
A common, divergent, efficient, stereoselective and short approach for the total syntheses of some carbahexopyranoses namely, MK7607, (-)-gabosine A, (-)-conduritol E, (-)-conduritol F, 6a-carba-β-d-fructopyranose and other carbasugars using chemoselective Grignard or Nozaki-Hiyama-Takai-Kishi (NHTK) reactions and RCM. Herein, the Grignard and NHTK reactions are able to differentiate the reactivity difference between lactol or lactolacetate and aldehyde of 2 & 6 under given conditions to give the desired skeleton chemoselectivity.
Collapse
Affiliation(s)
- Allam Vinaykumar
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Hyderabad India
| | - Banothu Surender
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad India
| | - Batchu Venkateswara Rao
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad India
| |
Collapse
|
4
|
Riester O, Burkhardtsmaier P, Gurung Y, Laufer S, Deigner HP, Schmidt MS. Synergy of R-(-)carvone and cyclohexenone-based carbasugar precursors with antibiotics to enhance antibiotic potency and inhibit biofilm formation. Sci Rep 2022; 12:18019. [PMID: 36289389 PMCID: PMC9606123 DOI: 10.1038/s41598-022-22807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The widespread use of antibiotics in recent decades has been a major factor in the emergence of antibiotic resistances. Antibiotic-resistant pathogens pose increasing challenges to healthcare systems in both developing and developed countries. To counteract this, the development of new antibiotics or adjuvants to combat existing resistance to antibiotics is crucial. Glycomimetics, for example carbasugars, offer high potential as adjuvants, as they can inhibit metabolic pathways or biofilm formation due to their similarity to natural substrates. Here, we demonstrate the synthesis of carbasugar precursors (CSPs) and their application as biofilm inhibitors for E. coli and MRSA, as well as their synergistic effect in combination with antibiotics to circumvent biofilm-induced antibiotic resistances. This results in a biofilm reduction of up to 70% for the CSP rac-7 and a reduction in bacterial viability of MRSA by approximately 45% when combined with the otherwise ineffective antibiotic mixture of penicillin and streptomycin.
Collapse
Affiliation(s)
- Oliver Riester
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pia Burkhardtsmaier
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Yuna Gurung
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Stefan Laufer
- grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,Tuebingen Center for Academic Drug Discovery and Development (TüCAD2), 72076 Tübingen, Germany
| | - Hans-Peter Deigner
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Faculty of Science, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,grid.418008.50000 0004 0494 3022EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
| | - Magnus S. Schmidt
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| |
Collapse
|
5
|
Simone MI, Wood A, Campkin D, Kiefel MJ, Houston TA. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur J Med Chem 2022; 235:114282. [DOI: 10.1016/j.ejmech.2022.114282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
|
6
|
Kaczor-Kamińska M, Kamiński K, Wróbel M. Heparan Sulfate, Mucopolysaccharidosis IIIB and Sulfur Metabolism Disorders. Antioxidants (Basel) 2022; 11:antiox11040678. [PMID: 35453363 PMCID: PMC9026333 DOI: 10.3390/antiox11040678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Mucopolysaccharidosis, type IIIB (MPS IIIB) is a rare disease caused by mutations in the N-alpha-acetylglucosaminidase (NAGLU) gene resulting in decreased or absent enzyme activity. On the cellular level, the disorder is characterized by the massive lysosomal storage of heparan sulfate (HS)—one species of glycosaminoglycans. HS is a sulfur-rich macromolecule, and its accumulation should affect the turnover of total sulfur in cells; according to the studies presented here, it, indeed, does. The lysosomal degradation of HS in cells produces monosaccharides and inorganic sulfate (SO42−). Sulfate is a product of L-cysteine metabolism, and any disruption of its levels affects the entire L-cysteine catabolism pathway, which was first reported in 2019. It is known that L-cysteine level is elevated in cells with the Naglu−/− gene mutation and in selected tissues of individuals with MPS IIIB. The level of glutathione and the Naglu−/− cells’ antioxidant potential are significantly reduced, as well as the activity of 3-mercaptopyruvate sulfurtransferase (MPST, EC 2.8.1.2) and the level of sulfane sulfur-containing compounds. The direct reason is not yet known. This paper attempts to identify some of cause-and-effect correlations that may lead to this condition and identifies research directions that should be explored.
Collapse
Affiliation(s)
- Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-422-7400
| | - Kamil Kamiński
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland;
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| |
Collapse
|
7
|
Zorin A, Klenk L, Mack T, Deigner HP, Schmidt MS. Current Synthetic Approaches to the Synthesis of Carbasugars from Non-Carbohydrate Sources. Top Curr Chem (Cham) 2022; 380:12. [PMID: 35138497 PMCID: PMC8827411 DOI: 10.1007/s41061-022-00370-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
Carbasugars are a group of carbohydrate derivatives in which the ring oxygen is replaced by a methylene group, producing a molecule with a nearly identical structure but highly different behavior. Over time, this definition has been extended to include other unsaturated cyclohexenols and carba-, di-, and polysaccharides. Such molecules can be found in bacterial strains and the human body, acting as neurotransmitters (e.g., inositol trisphosphate). In science, there are a wide range of research areas that are affected by, and involve, carbasugars, such as studies on enzyme inhibition, lectin-binding, and even HIV and cancer treatment. In this review article, different methods for synthesizing carbasugars, their derivatives, and similar cyclohexanes presenting comparable characteristics are summarized and evaluated, utilizing diverse starting materials and synthetic procedures.
Collapse
Affiliation(s)
- Alexandra Zorin
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
| | - Lukas Klenk
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
| | - Tonia Mack
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
- EXIM Department, Fraunhofer Institute IZI Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, Associated Member of Tuebingen University, Auf der Morgenstelle 8, 72076 Tubingen, Germany
| | - Magnus S. Schmidt
- Medical and Life Sciences Faculty, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany
| |
Collapse
|
8
|
Biduś N, Banachowicz P, Buda S. Application of a tandem seleno-michael/aldol reaction in the total syntheses of (+)-Pericosine B, (+)-Pericosine C, (+)-COTC and 7-chloro-analogue of (+)-Gabosine C. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Tan A. Novel 1,2,3-triazole compounds: Synthesis, In vitro xanthine oxidase inhibitory activity, and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|