1
|
Zhang Y, Lu J, Xu S, Ma D, Li Q, Wang Z, Gao B, Wang Y. Spatially-confined removal of intracellular antibiotic resistance genes via electrochemical membranes: Influence of pore size on electrical stimulation and exogenous reactive oxygen species oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138237. [PMID: 40220394 DOI: 10.1016/j.jhazmat.2025.138237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Electrochemical membranes (EMs), as one of the most promising novel materials, offer the potential to eliminate antibiotic resistance genes (ARGs). However, there remain significant knowledge gaps regarding the removal pathways of ARGs within the spatially-confined pores of EMs, particularly for intracellular ARGs (iARGs). In this study, EMs with different pore sizes were utilized to treat synthetic water samples containing Escherichia coli genetically engineered with ARGs. It was thereby revealed that the removal efficiencies and pathways of iARGs are closely associated with the spatially-confined pores of EMs. Specifically, EMs with smaller pore sizes (e.g., 10 µm) are capable of removing more iARGs, mainly due to the synergistic effects of physical collision, direct electrical stimulation and exogenous reactive oxygen species (ROS) oxidation, with the latter two mechanisms being the predominant drivers. In contrast, EMs with larger pore sizes (e.g., 40 µm), show lower iARGs removal efficiencies. This is because the degradation of iARGs in these EMs relied more on exogenous ROS oxidation. In the case of large pores, cells can pass through the EMs without colliding with the pore walls, resulting in reduced exposure to physical collision and electrical stimulation. Additionally, the study found that 1O2 generated by EMs can penetrate into cells and opportunistically oxidize iARGs prior to their release into the extracellular environment. These findings provide valuable insights into the mechanisms and potential optimization strategies for EMs in curbing the horizontal transfer of ARGs.
Collapse
Affiliation(s)
- Yunxin Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Jiajun Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shiping Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Defang Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Zhining Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China.
| |
Collapse
|
2
|
Sereewatthanawut I, Swadchaipong N, Tongnan V, Khajonvittayakul C, Maneesard P, Ampairojanawong R, Makdee A, Hartley M, Li K, Hartley UW. Direct dimethyl carbonate synthesis from CO 2 and methanol over a flower-like CeO 2 catalyst with 2-cyanopyridine as a dehydrating agent in continuous packed-bed reactor. RSC Adv 2024; 14:36771-36781. [PMID: 39559578 PMCID: PMC11571059 DOI: 10.1039/d4ra06187j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
A flower-like CeO2 catalyst was successfully synthesized using an acrylamide graft copolymerized on glucose under hydrothermal conditions and used for the direct synthesis of dimethyl carbonate (DMC) from CO2 and CH3OH in a packed-bed reactor with 2-cyanopyridine as a dehydrating agent. The synthesized flower-like CeO2 exhibited both basicity and acidity properties with values of 300 μmol g-1 and 80 μmol g-1, respectively, according to CO2-TPD and NH3-TPD results. The effect of reaction parameters such as reaction temperature, feed ratio, catalyst quantity, and operating pressure on the DMC production over the flower-like CeO2 catalyst was investigated. The optimum conditions were found to be a temperature of 120 °C, catalyst weight of 1.0 g, CH3OH : CO2 ratio of 1 : 1, and pressure of 30 bar, which provided the highest CH3OH conversion, DMC selectivity, and DMC yield of 86.6%, 99.3%, and 86.0%, respectively. Furthermore, no changes were observed in the structure, morphology, and particle size of the flower-like CeO2 catalyst after the DMC synthesis reaction, indicating that the synthesized catalyst was resistant to the reaction test under such optimum reaction conditions.
Collapse
Affiliation(s)
- Issara Sereewatthanawut
- King Prajadhipok's Institute Bangkok 10210 Thailand
- Faculty of Engineering and Technology, Pathumthani University Pathumthani 12000 Thailand
| | - Notsawan Swadchaipong
- Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Vut Tongnan
- Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Chalempol Khajonvittayakul
- Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Panupan Maneesard
- Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Rossarin Ampairojanawong
- Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Ammarika Makdee
- Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Matthew Hartley
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Kang Li
- Chemical Engineering, Imperial College London SW7 2AZ UK
| | - Unalome Wetwatana Hartley
- Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| |
Collapse
|
3
|
Sharma M, Singh R, Sharma A, Krishnan V. Tuning of surface oxygen vacancies for enhancing photocatalytic performance under visible light irradiation in Sb 2WO 6 nanostructures. Dalton Trans 2024; 53:6731-6746. [PMID: 38530659 DOI: 10.1039/d4dt00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Tuning of vacancies in photocatalytic materials has emerged as a versatile strategy to enhance visible light absorption and photocatalytic activity. In this study, surface oxygen vacancies (defects) were incorporated on antimony tungstate to boost its photocatalytic activity, which was examined by studying the degradation of model pollutants under visible light irradiation. Specifically, a two-to-three-fold increase in photocatalytic activity was observed for oxygen vacancy-rich antimony tungstate in comparison to its pristine counterpart. This improvement in the photocatalytic performance can be attributed to the presence of oxygen vacancies in the material, which leads to an enhanced absorption of light, decrease in the recombination of charge carriers, and increase in the number of active sites. In addition, owing to the nature of the surface charge present, the photocatalysts were found to be selective for the degradation of cationic pollutants in comparison to anionic and neutral pollutants, and can thus be used for the separation of a mixture of pollutants. Furthermore, scavenger studies illustrate that holes play a major role in the photocatalytic degradation of pollutants. Moreover, the excellent photostability of oxygen vacancy-rich antimony tungstate over three consecutive cycles demonstrates its potential as a good photocatalyst for the degradation of pollutants. Overall, this study demonstrates that the engineering of surface vacancies on perovskite oxide materials can render them as efficient single component photocatalysts for environmental remediation applications.
Collapse
Affiliation(s)
- Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India.
| | - Rahul Singh
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India.
| | - Anitya Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India.
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India.
| |
Collapse
|
4
|
Du X, Liu Y, Li H, Liu S, Shen X. Selective synthesis of meta-phenols from bio-benzoic acids via regulating the adsorption state. iScience 2023; 26:107460. [PMID: 37593461 PMCID: PMC10428116 DOI: 10.1016/j.isci.2023.107460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Phenols are important building blocks widely applied in many fields. The pronounced orientational effect of the phenolic hydroxyl group makes achieving selective synthesis of meta-phenols challenging. Accessing meta-phenols needs lengthy synthetic sequences. Herein, we first developed a heterogeneous CO2-mediated CeO2-5CuO catalyst for decarboxylative oxidation of benzoic acids with a more than 80% selectivity to meta-phenols. This technology is based on a traceless directing group relay method. The CeO2-CuO catalysts with different Ce/Cu ratios exhibited controllable reaction selectivity between decarboxylation and decarboxylative oxidation. Spectroscopy experiments and computational studies showed the adsorption state of benzoic acid was found to be crucial for subsequent reaction pathways. The moderate adsorption on CO2-mediated CeO2-5CuO catalyst contributes to the distinct selectivity of phenol. Furthermore, the paddlewheel intermediate facilitates the synthesis of meta-phenols from benzoic acids. This traceless directing group method would promote the development of useful one-pot meta-substituted phenols from bio-based benzoic acids.
Collapse
Affiliation(s)
- Xinze Du
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumei Liu
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Huixiang Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shenglin Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaojun Shen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Sharma M, K H, Gaur UK, Ganguli AK. Synthesis of mesoporous SiO 2-CeO 2 hybrid nanostructures with high catalytic activity for transamidation reaction. RSC Adv 2023; 13:13134-13141. [PMID: 37124026 PMCID: PMC10140673 DOI: 10.1039/d3ra01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
Transamidation reactions catalyzed by boronic acid derivatives and metal catalysts are well known nevertheless their requirement for elevated temperatures and long reaction times were considered major obstacles in converting amides to N-alkyl amides with the coupling of primary amides and amines. The acidic-basic co-existence of ceria nanoparticles is considered a perfect choice for different catalytic activities. Mesoporous silica on the other hand is well known for its use as a supporting material for catalysts owing to its excellent characteristics like large surface area, good absorption capacity, and high-temperature stability. The SiO2-CeO2 hybrid nanocomposite was prepared by solvothermal route followed by annealing and the formation of the catalyst was confirmed by XRD, EDX, FTIR, and TEM characterization techniques. The hybrid catalyst shows high catalytic activity towards transamidation reaction at very low temperatures and in solvent-free conditions compared to pure ceria nanoparticles. The SiO2-CeO2 catalyst showed more than 99% selectivity and a remarkable catalytic activity of above 90% for the conversion of N-heptyl amine with acetamide to N-heptyl acetamide at a very low temperature of 120 °C for 3 hours. Furthermore, the catalyst remains stable and active for repeated catalytic cycles. It established 80% catalytic activity even after 4 repeated cycles making it suitable for multiple-time usages.
Collapse
Affiliation(s)
- Manu Sharma
- Central University of Gujarat Gandhinagar India
| | | | | | | |
Collapse
|
6
|
Ma Q, Chu Y, Ni X, Zhang J, Chen H, Xu F, Wang Y. CeO 2 modified carbon nanotube electrified membrane for the removal of antibiotics. CHEMOSPHERE 2023; 310:136771. [PMID: 36241109 DOI: 10.1016/j.chemosphere.2022.136771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Electrified carbon nanotube membranes (ECM) are used as electroactive porous materials for the degradation of micropollutants. It integrated design of both electrochemical processes and filtration functions. In this study, CeO2 modified carbon nanotube electrified membrane (CeO2@CNT membrane) was prepared and activate NaClO towards degradation of antibiotics. As CeO2 with face-centered cubic (Fcc) fluorite structure was loaded onto the CNT sidewalls, the CeO2@CNT membrane showed a higher over potential and a smaller equivalent polarization resistance compared to ECM. More reactive oxygen species (ROS) and reactive chlorine species (RCS) were generated by CeO2@CNT membrane due to faster electron transfer at the solid-liquid interface. Thus, the removal efficiencies of DCF, SMX, CIP, TC and CBZ were more than 91.2%, 91.3%, 94.4%, 99.3% and 89.4% by the CeO2@CNT membrane with NaClO, respetively. And the apparent reaction rate constant (k) of the CeO2@CNT membrane was 2.9 times of that of ECM. The selective capping experiments and density functional theory (DFT) calculation showed that the oxygen vacancies of CeO2 contributed to the generation of ‧OH, and the generation of ClO‧ and ‧O2- would mainly occur on Lewis acid sites of CeO2. In addition, the CeO2@CNT membrane showed a reasonable stability to treat actual water samples and reduced disinfection byproducts (DBPs) formation, suggesting that it can potentially be combined with the conventional chlorine disinfection to degrade antibiotics in water.
Collapse
Affiliation(s)
- Qingfeng Ma
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yongbao Chu
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiaoyu Ni
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jingyi Zhang
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haoze Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Gilbert EA, Polo ML, Maffi JM, Guastavino JF, Vaillard SE, Estenoz DA. The organic chemistry behind the recycling of poly(bisphenol‐A carbonate) for the preparation of chemical precursors: A review. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elangeni Ana Gilbert
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Mara Lis Polo
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | | | - Javier Fernando Guastavino
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Santiago Eduardo Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| | - Diana Alejandra Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral ‐ CONICET) Santa Fe Argentina
| |
Collapse
|
8
|
Wang J, Cheng DG, Chen F, Zhan X. Chlorine-Decorated Ceria Nanocubes for Facilitating Low-Temperature Cyclohexane Oxidative Dehydrogenation: Unveiling the Decisive Role of Surface Species and Acid Properties. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jinling Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dang-guo Cheng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Fengqiu Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
9
|
Pei X, Zhang T, Zhong J, Chen Z, Jiang C, Chen W. Substoichiometric titanium oxide Ti 2O 3 exhibits greater efficiency in enhancing hydrolysis of 1,1,2,2-tetrachloroethane than TiO 2 nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145705. [PMID: 33609816 DOI: 10.1016/j.scitotenv.2021.145705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Oxygen-deficient substoichiometric titanium oxides, or "titanium suboxides," are produced incidentally from coal combustion and are environmentally abundant. Additionally, titanium suboxide nanomaterials are promising new materials with likely future environmental release. How these materials may affect contaminant fate differently than stoichiometric TiO2 (nano)materials is largely unknown. Here, we show that Ti2O3 (selected as a model titanium suboxide) exhibits significantly greater efficiency in enhancing the hydrolysis of 1,1,2,2-tetrachloroethane (TeCA), a common groundwater contaminant, than the stoichiometric anatase and rutile TiO2. At environmentally relevant pH (6.5-7.5), the surface area-normalized pseudo-first-order hydrolysis rate constant in the presence of Ti2O3 is approximately an order of magnitude higher than those associated with TiO2. The superior catalytic efficiency of Ti2O3 can be attributed to both its higher surface hydrophobicity, which renders higher adsorption affinity for TeCA, and its higher concentration of Lewis acid sites (mainly the Ti3+ and the five-coordinated Ti4+). Particularly, the deprotonated hydroxyl groups attached to Ti3+ (a weaker Lewis acid than Ti4+) exhibit higher basicity and thus, are more effective in catalyzing the base-promoted hydrolysis reaction. The findings call for further understanding of the environmental implications of titanium suboxide (nano)materials, which may not be readily predictable based on the knowledge acquired for TiO2.
Collapse
Affiliation(s)
- Xule Pei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Jingyi Zhong
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Zaihao Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Zhao G, Liang H, Xu H, Li C, Tan Q, Zhang D. Catalytic wet peroxide degradation of acrylonitrile wastewater by ordered mesoporous Ag/CeO 2: synthesis, performance and kinetics. RSC Adv 2021; 11:15959-15968. [PMID: 35481213 PMCID: PMC9030448 DOI: 10.1039/d1ra01258d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022] Open
Abstract
Ordered mesoporous Ag/CeO2 catalysts have been successfully synthesized by a microwave assisted soft template method. The morphology, structure and chemical composition of the catalyst were characterized by XRD, N2 adsorption-desorption, SEM, EDS, TEM and XPS. The study of catalytic performance and reaction kinetics of organic matter degradation in acrylonitrile wastewater was performed in a catalytic wet peroxide (CWPO) system. The degradation pathways of organic matter in acrylonitrile wastewater were elucidated by temporal evolution of intermediates and final products detected by GC/MS analysis along with a continuous flow experiment study. The results show that the Ag/CeO2 has an ordered mesoporous structure, the specific surface area is 91.4-118.2 m2 g-1 and the average pore size is 12.63-16.86 nm. 0.4-Ag/CeO2 showed the best catalytic performance, the COD removal rate reached 94.6%, which was 30% higher than that of CeO2. The degradation is in accordance with the second-order reaction kinetics of the Arrhenius empirical model and Langmuir-Hinshelwood kinetic model. However the latter fits better, and the linear correlation coefficient R 2 is more than 0.98, which describes the adsorption catalytic mechanism of Ag/CeO2. According to the analysis by GC/MS, the organic compounds in acrylonitrile wastewater oxidized into intermediate compounds and other small compounds, then are further oxidized into carbon dioxide and water. The catalytic activity of Ag/CeO2 was the result of the combination of Lewis acid-base position of CeO2 and redox cycle of Ce3+/Ce4+.
Collapse
Affiliation(s)
- Guozheng Zhao
- School of Environmental & Safety Engineering, Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Hui Liang
- School of Environmental & Safety Engineering, Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Hongzhu Xu
- School of Environmental & Safety Engineering, Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Changbo Li
- School of Environmental & Safety Engineering, Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Qingwei Tan
- School of Environmental & Safety Engineering, Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Daihang Zhang
- School of Environmental & Safety Engineering, Liaoning Petrochemical University Liaoning Fushun 113001 China
| |
Collapse
|
11
|
Taniguchi A, Kumabe Y, Kan K, Ohtani M, Kobiro K. Ce 3+-enriched spherical porous ceria with an enhanced oxygen storage capacity. RSC Adv 2021; 11:5609-5617. [PMID: 35423111 PMCID: PMC8694730 DOI: 10.1039/d0ra10186a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Porous ceria was obtained using a unique solvothermal reaction in acetonitrile, applying high temperature and pressure. The resulting material comprised homogeneous and monodisperse spheres and exhibited an extremely large surface area of 152 m2 g-1. From catalytic performance evaluation by vapor- and liquid-phase reactions, the synthesized porous ceria showed superior and different reaction activity compared with commercial CeO2. To examine the origin of the reaction activity of the present porous ceria, synchrotron hard X-ray photoelectron spectroscopy (HAXPES) measurements were carried out. The systematic study of HAXPES measurements revealed that the obtained porous ceria with the present solvothermal method contained a very high concentration of Ce3+. Moreover, O2-pulse adsorption analyses demonstrated a significant oxygen adsorption capacity exceeding 268 μmol-O g-1 at 400 °C owing to its high contents of Ce3+ species.
Collapse
Affiliation(s)
- Ayano Taniguchi
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Yoshitaka Kumabe
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Kai Kan
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Laboratory for Structural Nanochemistry, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Research Center for Molecular Design, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Masataka Ohtani
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Laboratory for Structural Nanochemistry, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Research Center for Molecular Design, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Kazuya Kobiro
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Laboratory for Structural Nanochemistry, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Research Center for Molecular Design, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| |
Collapse
|
12
|
|
13
|
Hayashi E, Yamaguchi Y, Kita Y, Kamata K, Hara M. One-pot aerobic oxidative sulfonamidation of aromatic thiols with ammonia by a dual-functional β-MnO 2 nanocatalyst. Chem Commun (Camb) 2020; 56:2095-2098. [PMID: 31995042 DOI: 10.1039/c9cc09411c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-surface-area β-MnO2 (β-MnO2-HS) nanoparticles could act as effective heterogeneous catalysts for the one-pot oxidative sulfonamidation of various aromatic and heteroaromatic thiols to the corresponding sulfonamides using molecular oxygen (O2) and ammonia (NH3) as respective oxygen and nitrogen sources, without the need for any additives.
Collapse
Affiliation(s)
- Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | |
Collapse
|