1
|
Shafiezadeh F, Javid A, Zhiani R, Allameh S. Ho 3Fe 5O 12 nanoparticles immobilized on FPS for production of a biopolymer from CO 2 and limonene epoxide. RSC Adv 2024; 14:37431-37437. [PMID: 39582934 PMCID: PMC11583889 DOI: 10.1039/d4ra05285d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Herein, we present the synthesis of nanocatalysts with a large surface area. This was achieved through an interaction involving tetraethyl orthosilicate (TEOS) and tripolyphosphate (TPP), followed by the coupling of a ruthenium acetate complex with the click-transformed ligand of filamentous phosphosilicate (FPS). As a result, Ho3Fe5O12 nanoparticles were uniformly distributed without aggregation over FPS, forming Ho3Fe5O12@FPS. This substance was subsequently employed as a green nanocatalyst for the synthesis of cyclic carbonate from carbon dioxide and limonene epoxide whilst adhering to eco-friendly conditions. In the next step, we attempted to synthesize a polymer from synthesized natural cyclic carbonate. The incorporation of threadlike FPS divisions increased the ability to adsorb and aided the retrieval of the adsorbent without notably diminishing its effectiveness. The formed products were easily separated from the eco-friendly medium, and the catalyst was reused many times without a noticeable decrease in its activity and specificity.
Collapse
Affiliation(s)
- Fatemeh Shafiezadeh
- Department of Chemistry, Mashhad Branch, Islamic Azad University Mashhad Iran
| | - Ali Javid
- Department of Chemistry, Mashhad Branch, Islamic Azad University Mashhad Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University Neyshabur Iran
- New Materials Technology and Processing Research Centre, Neyshabur Branch, Islamic Azad University Neyshabur Iran
| | - Sadegh Allameh
- Department of Chemistry, Mashhad Branch, Islamic Azad University Mashhad Iran
| |
Collapse
|
2
|
Tandem Reactions Based on the Cyclization of Carbon Dioxide and Propargylic Alcohols: Derivative Applications of α-Alkylidene Carbonates. Catalysts 2022. [DOI: 10.3390/catal12010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a well-known greenhouse gas, carbon dioxide (CO2) has attracted increasing levels of attention in areas of energy, environment, climate, etc. Notably, CO2 is an abundant, nonflammable, and renewable C1 feedstock in view of chemistry. Therefore, the transformation of CO2 into organic compounds is an extremely attractive research topic in modern green and sustainable chemistry. Among the numerous CO2 utilization methods, carboxylative cycloaddition of CO2 into propargylic alcohols is an ideal route due to the corresponding products, α-alkylidene cyclic carbonates, which are a series of highly functionalized compounds that supply numerous potential methods for the construction of various synthetically and biologically valuable agents. This cyclization reaction has been intensively studied and systematically summarized, in the past years. Therefore, attention has been gradually transferred to produce more derivative compounds. Herein, the tandem reactions of this cyclization with hydration, amination, alcoholysis, and isomerization to synthesize α-hydroxyl ketones, oxazolidinones, carbamates, unsymmetrical carbonates, tetronic acids, ethylene carbonates, etc. were systematically reviewed.
Collapse
|
3
|
Xu Y, Zhang Y, Hu J, Chen C, Yuan Y, Verpoort F. Synthesis of β-Oxopropylcarbamates Catalyzed by ZnO/Ionic Liquids under Atmospheric CO 2. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Isobaev MD, Pulatov EK, Abdullaev TK, Turdialiev MZ, Mavlonov BG, Jumaeva MI. Alternative Synthetic Routes to Dioxolanes and
Thiadiazines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Xiong TK, Li XJ, Zhang M, Liang Y. Organic synthesis of fixed CO 2 using nitrogen as a nucleophilic center. Org Biomol Chem 2020; 18:7774-7788. [PMID: 32966496 DOI: 10.1039/d0ob01590c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, recent progress in the application of CO2 as an electrophilic reagent and nitrogen as a nucleophilic center under different catalytic conditions in organic synthesis is summarized. The used catalytic methods in the reactions of CO2 and nitrogen are classified as metal catalysis, metal-free catalysis, photocatalysis and electrocatalysis. Various catalytic conditions have been used to solve the problems of thermodynamic properties and stability of CO2. The transformation mechanisms of these reactions are discussed.
Collapse
Affiliation(s)
- Ting-Kai Xiong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| | | | | | | |
Collapse
|
6
|
Chen M, Wu Q, Lin C, Zhang J, Zhao J, Chen J, Xu Y. Chemical Fixation of CO 2 Using Highly Dispersed Cu on Hierarchically Porous N-Doped Carbon. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40236-40247. [PMID: 32805818 DOI: 10.1021/acsami.0c08001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical transformation of carbon dioxide (CO2) into fine chemicals such as oxazolidinones and carbamates is mainly reported using transition-metal complexes as homogeneous catalysts. Herein, we demonstrate that a heterogeneous catalyst of highly dispersed Cu (Cu/NHPC) supported on hierarchically porous N-doped carbon (NHPC) can efficiently promote CO2 fixations to oxazolidinones and β-oxopropylcarbamates. The obtained NHPC, assembled by ultrathin nitrogen-doped carbon nanosheets with a three-dimensional (3D) structure, is readily prepared by pyrolysis of a nitrogen-containing polymer gel (NPG) in the presence of an activator of potassium bicarbonate (KHCO3). The resulting NHPC shows specific Brunauer-Emmet-Teller (BET) surface areas up to 2054 m2 g-1 with a mean micro/mesopore size of 0.55/3.2 nm and a broad macropore size distribution from 50 to 230 nm. The Cu/NHPC can efficiently promote three-component coupling of CO2, amines, and propargyl alcohols for syntheses of various oxazolidinones and β-oxopropylcarbamates with yields up to 99% and a wide substrate scope. Moreover, the Cu/NHPC exhibits excellent recyclability in CO2-to-oxazolidinone transformation during nine-time recycling. The research thus develops an NHPC-based heterogeneous Cu catalyst for green transformation of CO2.
Collapse
Affiliation(s)
- Mingzhe Chen
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
| | - Qiumin Wu
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chuncheng Lin
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
| | - Jiarui Zhang
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
| | - Jigang Zhao
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinzhu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|