1
|
Karmakar A, Santos AACD, Liu P, Gurbanov AV, Pires J, Alegria ECBA, Hasanov KI, Guedes da Silva MFC, Wang Z, Pombeiro AJL. Thiophene-Functionalized Cadmium(II)-Based Metal-Organic Frameworks for CO 2 Adsorption with Gate-Opening Effect, Separation, and Catalytic Conversion. Inorg Chem 2024; 63:13321-13337. [PMID: 38987901 DOI: 10.1021/acs.inorgchem.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Two new porous three-dimensional cadmium(II) metal-organic frameworks (MOFs) containing thiophene-appended carboxylate acid ligands, formulated as [Cd(L1)(4,4'-Bipy)]n.2n(DMF) (1) and [Cd(L2)(4,4'-Bipy)]n.2n(DMF) (2) [where L1 = 5-{(thiophen-2-ylmethyl)amino}isophthalate, L2 = 5-{(thiophen-3-ylmethyl)amino}isophthalate, 4,4'-Bipy = 4,4'-bipyridine, and DMF = N,N'-dimethylformamide] have been synthesized and structurally characterized. The gas adsorption analysis of the activated MOFs shows that they specifically capture CO2 (uptake amount 4.36 mmol/g under 1 bar at 195 K) over N2 and CH4. Moreover, both MOFs show a gate-opening-closing phenomenon, which features the S-shaped isotherms with impressive hysteretic desorption during the CO2 adsorption-desorption process at 195 K. Ideal adsorbed solution theory (IAST) calculations of these MOFs displayed that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are approximately 8.6-23 and 93-565, respectively. Configurational bias Monte Carlo simulation was performed to understand the mechanism behind the better CO2 adsorption by these MOFs. Catalytic activity of the MOFs for the CO2 fixation reactions with different epoxides to form cyclic carbonates were tested. These MOFs demonstrated a significantly high conversion (94-99%) of epichlorohydrin to the corresponding cyclic carbonate within 8 h of reaction time at 1 bar of CO2 pressure, at 70 °C, and they can be reused up to five cycles without losing considerably their activity.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| | - Andreia A C D Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, Lisboa 1959-007, Portugal
| | - Peixi Liu
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
| | - Atash V Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 33, AZ 1148 Baku, Azerbaijan
| | - João Pires
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Elisabete C B A Alegria
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, Lisboa 1959-007, Portugal
| | - Khudayar I Hasanov
- Western Caspian University, Istiqlaliyyat Str. 31, AZ 1001 Baku , Azerbaijan
- Azerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14, AZ 1022 Baku, Azerbaijan
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| | - Zhihua Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| |
Collapse
|
2
|
Karmakar A, Santos AACD, Pagliaricci N, Pires J, Batista M, Alegria ECBA, Martin-Calvo A, Gutiérrez-Sevillano JJ, Calero S, Guedes da Silva MFC, Pettinari R, Pombeiro AJL. Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO 2 Capture, Separation, and Chemical Fixation with Epoxides under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38605636 DOI: 10.1021/acsami.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In the present work, three novel halogen-appended cadmium(II) metal-organic frameworks [Cd2(L1)2(4,4'-Bipy)2]n·4n(DMF) (1), [Cd2(L2)2(4,4'-Bipy)2]n·3n(DMF) (2), and [Cd(L3)(4,4'-Bipy)]n·2n(DMF) (3) [where L1 = 5-{(4-bromobenzyl)amino}isophthalate; L2 = 5-{(4-chlorobenzyl)amino}isophthalate; L3 = 5-{(4-fluorobenzyl)amino}isophthalate; 4,4'-Bipy = 4,4'-bipyridine; and DMF = N,N'-dimethylformamide] have been synthesized under solvothermal conditions and characterized by various analytical techniques. The single-crystal X-ray diffraction analysis demonstrated that all the MOFs feature a similar type of three-dimensional structure having a binuclear [Cd2(COO)4(N)4] secondary building block unit. Moreover, MOFs 1 and 2 contain one-dimensional channels along the b-axis, whereas MOF 3 possesses a 1D channel along the a-axis. In these MOFs, the pores are decorated with multifunctional groups, i.e., halogen and amine. The gas adsorption analysis of these MOFs demonstrate that they display high uptake of CO2 (up to 5.34 mmol/g) over N2 and CH4. The isosteric heat of adsorption (Qst) value for CO2 at zero loadings is in the range of 18-26 kJ mol-1. In order to understand the mechanism behind the better adsorption of CO2 by our MOFs, we have also performed configurational bias Monte Carlo simulation studies, which confirm that the interaction between our MOFs and CO2 is stronger compared to those with N2 and CH4. Various noncovalent interactions, e.g., halogen (X)···O, Cd···O, and O···O, between CO2 and the halogen atom, the Cd(II) metal center, and the carboxylate group from the MOFs are observed, respectively, which may be a reason for the higher carbon dioxide adsorption. Ideal adsorbed solution theory (IAST) calculations of MOF 1 demonstrate that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are ca. 28 and 193 at 273 K, respectively. However, upon increasing the temperature to 298 K, the selectivity value (S = 34) decreases significantly for the CO2/N2 mixture. We have also calculated the breakthrough analysis curves for all the MOFs using mixtures of CO2/CH4 (50:50) and CO2/N2 (50:50 and 15:85) at different entering gas velocities and observed larger retention times for CO2 in comparison with other gases, which also signifies the stronger interaction between our MOFs and CO2. Moreover, due to the presence of Lewis acidic metal centers, these MOFs act as heterogeneous catalysts for the CO2 fixation reactions with different epoxides in the presence of tetrabutyl ammonium bromide (TBAB), for conversion into industrially valuable cyclic carbonates. These MOFs exhibit a high conversion (96-99%) of epichlorohydrin (ECH) to the corresponding cyclic carbonate 4-(chloromethyl)-1,3-dioxolan-2-one after 12 h of reaction time at 1 bar of CO2 pressure, at 65 °C. The MOFs can be reused up to four cycles without compromising their structural integrity as well as without losing their activity significantly.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Andreia A C D Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal
| | - Noemi Pagliaricci
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy
| | - João Pires
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Mary Batista
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Elisabete C B A Alegria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal
| | - Ana Martin-Calvo
- Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Juan José Gutiérrez-Sevillano
- Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Sofia Calero
- Department of Applied Physics, Eindhoven University of Technology, Flux Building, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Riccardo Pettinari
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
5
|
Almáši M, Zeleňák V, Gyepes R, Zauška Ľ, Bourrelly S. A series of four novel alkaline earth metal-organic frameworks constructed of Ca(ii), Sr(ii), Ba(ii) ions and tetrahedral MTB linker: structural diversity, stability study and low/high-pressure gas adsorption properties. RSC Adv 2020; 10:32323-32334. [PMID: 35516486 PMCID: PMC9056647 DOI: 10.1039/d0ra05145d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
A series of four novel microporous alkaline earth metal-organic frameworks (AE-MOFs) containing methanetetrabenzoate linker (MTB) with composition {[Ca4(μ8-MTB)2]·2DMF·4H2O} n (UPJS-6), {[Ca4(μ4-O)(μ8-MTB)3/2(H2O)4]·4DMF·4H2O} n (UPJS-7), {[Sr3(μ7-MTB)3/2]·4DMF·7H2O} n (UPJS-8) and {[Ba3(μ7-MTB)3/2(H2O)6]·2DMF·4H2O} n (UPJS-9) (UPJS = University of Pavol Jozef Safarik) have been successfully prepared and characterized. The framework stability and thermal robustness of prepared materials were investigated using thermogravimetric analysis (TGA) and high-energy powder X-ray diffraction (HE-PXRD). MOFs were tested as adsorbents for different gases at various pressures and temperatures. Nitrogen and argon adsorption showed that the activated samples have moderate BET surface areas: 103 m2 g-1 (N2)/126 m2 g-1 (Ar) for UPJS-7'', 320 m2 g-1 (N2)/358 m2 g-1 (Ar) for UPJS-9'' and UPJS-8'' adsorbs only a limited amount of N2 and Ar. It should be noted that all prepared compounds adsorb carbon dioxide with storage capacities ranging from 3.9 to 2.4 wt% at 20 °C and 1 atm, and 16.4-13.5 wt% at 30 °C and 20 bar. Methane adsorption isotherms show no adsorption at low pressures and with increasing pressure the storage capacity increases to 4.0-2.9 wt% of CH4 at 30 °C and 20 bar. Compounds displayed the highest hydrogen uptake of 3.7-1.8 wt% at -196 °C and 800 Torr among MTB containing MOFs.
Collapse
Affiliation(s)
- Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University Hlavova 2030 CZ-128 43 Prague Czech Republic
| | - Ľuboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Sandrine Bourrelly
- Aix-Marseille University, CNRS, MADIREL Marseille Cedex 20 F-133 97 France
| |
Collapse
|