1
|
Yildirim T, Bali A, Koch M, Paul P, Latta L, Schneider-Daum N, Gallei M, Lehr CM. A New Class of Polyion Complex Vesicles (PIC-somes) to Improve Antimicrobial Activity of Tobramycin in Pseudomonas Aeruginosa Biofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401926. [PMID: 38829185 DOI: 10.1002/smll.202401926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Pseudomonas aeruginosa (PA) is a major healthcare concern due to its tolerance to antibiotics when enclosed in biofilms. Tobramycin (Tob), an effective cationic aminoglycoside antibiotic against planktonic PA, loses potency within PA biofilms due to hindered diffusion caused by interactions with anionic biofilm components. Loading Tob into nano-carriers can enhance its biofilm efficacy by shielding its charge. Polyion complex vesicles (PIC-somes) are promising nano-carriers for charged drugs, allowing higher drug loadings than liposomes and polymersomes. In this study, a new class of nano-sized PIC-somes, formed by Tob-diblock copolymer complexation is presented. This approach replaces conventional linear PEG with brush-like poly[ethylene glycol (methyl ether methacrylate)] (PEGMA) in the shell-forming block, distinguishing it from past methods. Tob paired with a block copolymer containing hydrophilic PEGMA induces micelle formation (PIC-micelles), while incorporating hydrophobic pyridyldisulfide ethyl methacrylate (PDSMA) monomer into PEGMA chains reduces shell hydrophilicity, leads to the formation of vesicles (PIC-somes). PDSMA unit incorporation enables unprecedented dynamic disulfide bond-based shell cross-linking, significantly enhancing stability under saline conditions. Neither PIC-somes nor PIC-micelles show any relevant cytotoxicity on A549, Calu-3, and dTHP-1 cells. Tob's antimicrobial efficacy against planktonic PA remains unaffected after encapsulation into PIC-somes and PIC-micelles, but its potency within PA biofilms significantly increases.
Collapse
Affiliation(s)
- Turgay Yildirim
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Aghiad Bali
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Pascal Paul
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Lorenz Latta
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Nicole Schneider-Daum
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123, Saarbrücken, Germany
- Saarene - Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- HIPS - Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
2
|
Wang X, Qin Q, Lu Y, Mi Y, Meng J, Zhao Z, Wu H, Cao X, Wang N. Smart Triboelectric Nanogenerators Based on Stimulus-Response Materials: From Intelligent Applications to Self-Powered Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1316. [PMID: 37110900 PMCID: PMC10141953 DOI: 10.3390/nano13081316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Smart responsive materials can react to external stimuli via a reversible mechanism and can be directly combined with a triboelectric nanogenerator (TENG) to deliver various intelligent applications, such as sensors, actuators, robots, artificial muscles, and controlled drug delivery. Not only that, mechanical energy in the reversible response of innovative materials can be scavenged and transformed into decipherable electrical signals. Because of the high dependence of amplitude and frequency on environmental stimuli, self-powered intelligent systems may be thus built and present an immediate response to stress, electrical current, temperature, magnetic field, or even chemical compounds. This review summarizes the recent research progress of smart TENGs based on stimulus-response materials. After briefly introducing the working principle of TENG, we discuss the implementation of smart materials in TENGs with a classification of several sub-groups: shape-memory alloy, piezoelectric materials, magneto-rheological, and electro-rheological materials. While we focus on their design strategy and function collaboration, applications in robots, clinical treatment, and sensors are described in detail to show the versatility and promising future of smart TNEGs. In the end, challenges and outlooks in this field are highlighted, with an aim to promote the integration of varied advanced intelligent technologies into compact, diverse functional packages in a self-powered mode.
Collapse
Affiliation(s)
- Xueqing Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qinghao Qin
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajing Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Wu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;
| |
Collapse
|
3
|
Lukáš Petrova S, Sincari V, Konefał R, Pavlova E, Hrubý M, Pokorný V, Jäger E. Microwave Irradiation-Assisted Reversible Addition-Fragmentation Chain Transfer Polymerization-Induced Self-Assembly of pH-Responsive Diblock Copolymer Nanoparticles. ACS OMEGA 2022; 7:42711-42722. [PMID: 36467927 PMCID: PMC9713868 DOI: 10.1021/acsomega.2c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Herein, we present a versatile platform for the synthesis of pH-responsive poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA-b-PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The N-(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %. The NPs were obtained with high monomer conversion and polymerization rates. The resulting diblock copolymer NPs were analyzed by dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM). cryo-TEM studies reveal the presence of only NPs with spherical morphology such as micelles and polymer vesicles known as polymersomes. Under the selected conditions, we were able to fine-tune the morphology from micelles to polymersomes, which may attract considerable attention in the drug-delivery field. The capability for drug encapsulation using the obtained in situ pH-responsive NPs, the polymersomes based on PHPMA23-b-PDPA100, and the micelles based on PHPMA51-b-PDPA100 was demonstrated using the hydrophobic agent and fluorescent dye as Nile red (NR). In addition, the NP disassembly in slightly acidic environments enables fast NR release.
Collapse
|
4
|
Chauhan N, Saxena K, Jain U. Smart Nanomaterials Employed Recently for Drug Delivery in Cancer Therapy: an Intelligent Approach. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai HC, Wu SY. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213015. [PMID: 35882161 DOI: 10.1016/j.bioadv.2022.213015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs. Dual anti-cancer drugs, DOX as a pro-drug and SN-38 as a targeting drug, were used to enhance inhibition. DLS confirmed that the non-cross-linked micelle (NCMs) showed a higher (96.43 nm) particle size compared to the CCMs (72.63 nm). Due to micellar shrinkage after crosslinking, CCMs displayed SN-38 drug loading (7.32 %) and encapsulation efficiency (86.23 %). The mPEG-P(Asp-Hyd) copolymer's in vitro cytotoxicity on HeLa and HaCaT cell lines found that 84.52 % of the cells are alive, and zebrafish (Danio rerio) embryos and larvae are highly biocompatible. The DOX/SN-38@CCMs had a sustained discharge profile in vitro, unlike the DOX/SN-38@NCMs. In DOX/SN-38@CCMs, HeLa cells were inhibited 50.90 % more than HaCaT (14.25 %) at the maximum drug dose (10 μg/mL). The CCMs successfully targeted and supplied DOX/SN-38 in HeLa cells rather than HaCaT cells, based on cellular uptake of 2D cell culture. CCMs, unlike NCMs, inhibit the growth of spheroids for extended periods of time due to the prolonged release of the loaded drug. Overall, CCMs are good-looking for use as regulated delivery of DOX/SN-38 in cancer cells because of all of these appealing characteristics.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science And Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Saleh TA, Fadillah G, Ciptawati E. Smart advanced responsive materials, synthesis methods and classifications: from Lab to applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02541-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|