1
|
Soleimani B, Asl AH, Khoshandam B, Hooshyari K. Enhanced performance of nanocomposite membrane developed on sulfonated poly (1, 4-phenylene ether-ether-sulfone) with zeolite imidazole frameworks for fuel cell application. Sci Rep 2023; 13:8238. [PMID: 37217638 DOI: 10.1038/s41598-023-34953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Proton exchange membrane fuel cells (PEMFC) have received a lot of interest and use metal-organic frameworks (MOF)/polymer nanocomposite membranes. Zeolite imidazole framework-90 (ZIF-90) was employed as an addition in the sulfonated poly (1, 4-phenylene ether-ether-sulfone) (SPEES) matrix in order to investigate the proton conductivity in a novel nanocomposite membrane made of SPEES/ ZIF. The high porosity, free surface, and presence of the aldehyde group in the ZIF-90 nanostructure have a substantial impact on enhancing the mechanical, chemical, thermal, and proton conductivity capabilities of the SPEES/ZIF-90 nanocomposite membranes. The results indicate that the utilization of SPEES/ZIF-90 nanocomposite membranes with 3wt% ZIF-90 resulted in enhanced proton conductivity of up to 160 mS/cm at 90 °C and 98% relative humidity (RH). This is a significant improvement compared to the SPEES membrane which exhibited a proton conductivity of 55 mS/cm under the same conditions, indicating a 1.9-fold increase in performance. Furthermore, the SPEES/ZIF-90/3 membrane exhibited a remarkable 79% improvement in maximum power density, achieving a value of 0.52 W/cm2 at 0.5 V and 98% RH, which is 79% higher than that of the pristine SPEES membrane.
Collapse
Affiliation(s)
- Bita Soleimani
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Ali Haghighi Asl
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran.
| | - Behnam Khoshandam
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Khadijeh Hooshyari
- Faculty of Chemistry, Department of Applied Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Beydaghi H, Bellani S, Najafi L, Oropesa-Nuñez R, Bianca G, Bagheri A, Conticello I, Martín-García B, Kashefi S, Serri M, Liao L, Sofer Z, Pellegrini V, Bonaccorso F. Sulfonated NbS 2-based proton-exchange membranes for vanadium redox flow batteries. NANOSCALE 2022; 14:6152-6161. [PMID: 35389414 DOI: 10.1039/d1nr07872k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (σ) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 × 10-7 to 2.34 × 10-7 cm2 min-1. Meanwhile, it increases the membrane σ and selectivity up to 94.35 mS cm-2 and 40.32 × 104 S min cm-3, respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm-2, delivering a maximum power density of 0.83 W cm-2 at a current density of 870 mA cm-2. The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm-2. This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.
Collapse
Affiliation(s)
- Hossein Beydaghi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | | | - Leyla Najafi
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- Department of Material Science and Engineering, Uppsala University, Box 534, 75103 Uppsala, Sweden
| | - Gabriele Bianca
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Ahmad Bagheri
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Irene Conticello
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | | | - Sepideh Kashefi
- Department of Chemical Engineering, Semnan University, Semnan, 3513119111, Iran
| | - Michele Serri
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| |
Collapse
|
4
|
A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14175440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
Collapse
|
5
|
Vinothkannan M, Kim AR, Yoo DJ. Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 2021; 11:18351-18370. [PMID: 35480954 PMCID: PMC9033471 DOI: 10.1039/d1ra00685a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Ae Rhan Kim
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
7
|
Beydaghi H, Bagheri A, Salarizadeh P, Kashefi S, Hooshyari K, Amoozadeh A, Shamsi T, Bonaccorso F, Pellegrini V. Enhancing the Performance of Poly(phthalazinone ether ketone)-Based Membranes Using a New Type of Functionalized TiO 2 with Superior Proton Conductivity. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Beydaghi
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Ahmad Bagheri
- Department of Chemistry, Amirkabir University of Technology, 1599637111 Tehran, Iran
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Sepideh Kashefi
- Department of Chemical Engineering, Semnan University, 3513119111 Semnan, Iran
| | - Khadijeh Hooshyari
- Department of Applied Chemistry, Faculty of Chemistry, Urmia University, 5756151818 Urmia, Iran
| | - Ali Amoozadeh
- Department of Chemistry, Semnan University, 3513119111 Semnan, Iran
| | - Taiebeh Shamsi
- Department of Chemistry, Semnan University, 3513119111 Semnan, Iran
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BeDimensional SpA, Via Albisola 121, 16163 Genova, Italy
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BeDimensional SpA, Via Albisola 121, 16163 Genova, Italy
| |
Collapse
|