1
|
Kaneko M, Yamaguchi A, Ito A. Induction of immunogenic cell death in murine colon cancer cells by ferrocene-containing redox phospholipid polymers. Cancer Sci 2022; 113:3558-3565. [PMID: 35950374 PMCID: PMC9530855 DOI: 10.1111/cas.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Immunogenic cell death (ICD), activated by damage-associated molecular patterns (DAMPs), is an apoptotic cell death process that elicits anti-tumor immunity. Although anticancer drugs that can induce ICD are promising for cancer treatment, the design strategy for ICD inducers remains unclear. In this study, we demonstrated the cell-penetrating redox phospholipid polymer poly(2-methacryloyloxyethyl phosphorylcholine-co-vinyl ferrocene) (pMFc) inducing ICD in murine colon cancer CT26 cells. pMFc produced oxidative stress by extracting electrons from CT26 cells and induced the release of DAMPs, such as calreticulin, adenosine triphosphate, and high-mobility group box 1. Moreover, the injection of pMFc-treated CT26 cells inhibited tumor formation in subsequently challenged CT26 cells, indicating that pMFc elicited anti-tumor immunity through ICD. Using in vivo therapy, intra-tumoral injections of pMFc induced complete tumor regression in 20% (1/5) of mice. These results suggested that the redox phospholipid polymer provides a new option for ICD-inducing anticancer polymers.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Akio Yamaguchi
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Akira Ito
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
2
|
Bennett MR, Jain A, Kovacs K, Hill PJ, Alexander C, Rawson FJ. Engineering bacteria to control electron transport altering the synthesis of non-native polymer. RSC Adv 2021; 12:451-457. [PMID: 35424487 PMCID: PMC8978702 DOI: 10.1039/d1ra06403g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The use of bacteria as catalysts for radical polymerisations of synthetic monomers has recently been established. However, the role of trans Plasma Membrane Electron Transport (tPMET) in modulating these processes is not well understood. We sort to study this by genetic engineering a part of the tPMET system NapC in E. coli. We show that this engineering altered the rate of extracellular electron transfer coincided with an effect on cell-mediated polymerisation using a model monomer. A plasmid with arabinose inducible PBAD promoters were shown to upregulate NapC protein upon induction at total arabinose concentrations of 0.0018% and 0.18%. These clones (E. coli (IP_0.0018%) and E. coli (IP_0.18%), respectively) were used in iron-mediated atom transfer radical polymerisation (Fe ATRP), affecting the nature of the polymerisation, than cultures containing suppressed or empty plasmids (E. coli (IP_S) and E. coli (E), respectively). These results lead to the hypothesis that EET (Extracellular Electron Transfer) in part modulates cell instructed polymerisations.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Katalin Kovacs
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Bioscience, University of Nottingham Sutton Bonington Campus Nottingham LE15 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, Boots Science Building, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
3
|
Kaneko M, Ishikawa M, Nakanishi S, Ishihara K. Anticancer Activity of Cell-Penetrating Redox Phospholipid Polymers. ACS Macro Lett 2021; 10:926-932. [PMID: 35549201 DOI: 10.1021/acsmacrolett.1c00336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Redox-active molecules are promising anticancer compounds because cancer cells are vulnerable to oxidative stress. Anticancer drugs are often incorporated into synthetic polymers to improve water solubility, stability, and retention in the body. Most conventional redox-active polymers are regarded as stimuli-responsive polymers, which induce the release of anticancer drugs in response to the surrounding redox environment. Here, we prepared redox phospholipid polymers composed of 2-methacryloyloxyethyl phosphorylcholine units and ferrocene or quinone units as anticancer redox polymers. Redox phospholipid polymers can disturb the intracellular redox state owing to their redox activity and cell membrane permeability. We observed that the redox potential of the polymers affected the reactivity with intracellular redox species and O2, resulting in a different impact on the viability of human cancer and normal cells. Notably, the polymer with moderate reactivity with the intracellular redox species and O2 was shown to suppress the viability of the cancer cells selectively.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560−8531, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Goda T, Hatano H, Yamamoto M, Miyahara Y, Morimoto N. Internalization Mechanisms of Pyridinium Sulfobetaine Polymers Evaluated by Induced Protic Perturbations on Cell Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9977-9984. [PMID: 32787130 DOI: 10.1021/acs.langmuir.0c01816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the interactions of soft nanomatters with cell membranes is particularly important for research into nanocarrier-based drug delivery systems, cell engineering, and subcellular imaging. Most nanoparticles, vesicles, micelles, and polymeric aggregates are internalized into endosomes and, eventually, lysosomes in the cytosol because of energy-dependent endocytic processes. Endocytic uptake substantially limits the access to the cytoplasm where a cargo agent acts. Bypassing the endocytic pathways by direct penetration into plasma membrane barriers would enhance the efficacy of nanomedicines. Some zwitterionic polymer nanoaggregates have been shown to permeate into the cell interior in an energy-independent manner. We have elucidated this phenomenon by observing changes in the biomembrane barrier functions against protons as the smallest indicator and have used these results to further design and develop poly(betaines). In this work, we investigated the translocation mechanisms for a series of zwitterionic poly(methacrylamide) and poly(methacrylate) species bearing a pyridinium propane sulfonate moiety in the monomers. Minor differences in the monomer structures and functional groups were observed to have dramatic effects on the interaction with plasma membranes during translocation. The ability to cross the plasma membrane involves a balance among the betaine dipole-dipole interaction, NH-π interaction, π-π interaction, cation-π interaction, and amide hydrogen bonding. We found that the cell-penetrating polysulfobetaines had limited or no detrimental effect on cell proliferation. Our findings enhance the opportunity to design and synthesize soft nanomatters for cell manipulations by passing across biomembrane partitions.
Collapse
Affiliation(s)
- Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Nano Innovation Institute, Inner Mongolia University for Nationalities, No. 22 HuoLinHe Street, Tongliao, Inner Mongolia 028000, P. R. China
| | - Hiroaki Hatano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Masaya Yamamoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
5
|
Kaneko M, Ishihara K, Nakanishi S. Redox-Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001849. [PMID: 32734709 DOI: 10.1002/smll.202001849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrochemical systems in which metabolic electrons in living microbes have been extracted to or injected from an extracellular electrical circuit have attracted considerable attention as environmentally-friendly energy conversion systems. Since general microbes cannot exchange electrons with extracellular solids, electron mediators are needed to connect living cells to an extracellular electrode. Although hydrophobic small molecules that can penetrate cell membranes are commonly used as electron mediators, they cannot be dissolved at high concentrations in aqueous media. The use of hydrophobic mediators in combination with small hydrophilic redox molecules can substantially increase the efficiency of the extracellular electron transfer process, but this method has side effects, in some cases, such as cytotoxicity and environmental pollution. In this Review, recently-developed redox-active polymers are highlighted as a new type of electron mediator that has less cytotoxicity than many conventional electron mediators. Owing to the design flexibility of polymer structures, important parameters that affect electron transport properties, such as redox potential, the balance of hydrophobicity and hydrophilicity, and electron conductivity, can be systematically regulated.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Graduate School of Engineering Science Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|