1
|
Yu W, Li J, Li C, Liu W, Zhang S. Innovative ag-AgCl@TiO 2@cellulose nanofiber porous composites with Z-scheme heterojunction for enhanced adsorption and photocatalytic degradation of formaldehyde. Carbohydr Polym 2025; 357:123505. [PMID: 40158959 DOI: 10.1016/j.carbpol.2025.123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Photocatalysis has emerged as one of the most promising technologies for formaldehyde purification owing to its green, safe, and cost-effective properties. However, most photocatalysts exhibit poor light absorption properties and exist as powders, limiting their large-scale application. To address this challenge, Ag-AgCl@TiO2@cellulose nanofiber porous composites were prepared by integrating the photocatalysts into a cellulose matrix through physical/chemical dual crosslinking, photoreduction, and freeze-drying. The materials exhibited excellent mechanical properties due to the hydrogen bonding and electrostatic adsorption interactions between the components. Moreover, the porous composites exhibited excellent synergistic adsorption-photocatalytic degradation performance for formaldehyde. This is attributed to the abundant polar functional groups in the cellulose nanofibers and the heterostructure formed by TiO2, Ag, and AgCl. The composites achieved a maximum photocatalytic degradation rate of 99.54 %. After five cycles of reuse, they still maintained a high degradation efficiency of 99.07 %, demonstrating excellent recyclability. Compared with similar materials, the synthesized porous composites performed well in terms of degradation rate, maximum degradation efficiency, and cyclic reutilization performance. In summary, this study provides an innovative approach to air purification.
Collapse
Affiliation(s)
- Wenfan Yu
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Jianchun Li
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Chang Li
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Wentao Liu
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China
| | - Shifeng Zhang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
2
|
Liu X, Li H, Wang D, Lu J, Wu Y, Sun W. Highly Stable Flexible SERS-Imprinted Membrane Based on Plasmonic MOF Material for the Selective Detection of Chrysoidin in Environmental Water. Polymers (Basel) 2024; 17:81. [PMID: 39795484 PMCID: PMC11723279 DOI: 10.3390/polym17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot". To avoid the poor reproducibility of Raman signals caused by the random arrangement of the powder substrate, polyvinyl chloride (PVC) is used to provide support and protection for the powder substrate. PVC has excellent dirt immunity and chemical stability, enabling the substrate to maintain Raman performance under complex and extreme detection conditions. FAZP-MIM has outstanding sensitivity and selectivity and can quickly and accurately capture targets even in the presence of similar structural interferences. The method showed superior recoveries in spiked recovery tests of real water samples and is expected to be practically applied to the trace detection of organic dye molecules in the environment.
Collapse
Affiliation(s)
- Xinyi Liu
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| | - Hongji Li
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| | - Dandan Wang
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Jian Lu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| |
Collapse
|
3
|
Huang J, Feng X, Zhao Y, Yi B, Li W, Zeng X, Xu H. Coral-like AgNPs hybrided MOFs modulated with biopolymer polydopamine for synergistic antibacterial and biofilm eradication. Int J Biol Macromol 2024; 282:137080. [PMID: 39481715 DOI: 10.1016/j.ijbiomac.2024.137080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Bacterial contamination is an intractable challenge in food safety, environments and biomedicine fields, and places a heavy burden on society. Polydopamine (PDA), a high molecular biopolymer, is considered as a promising candidate to participate in the design of novel antibacterial agents with unique contributions in biocompatibility, adherence, photothermal and metal coordination ability. In this study, coral-like ZIFL-PDA@AgNPs with excellent antibacterial properties and biocompatibility were prepared by embedding AgNPs into the biopolymer PDA-modulated ZIFL-PDA nanostructures by green reduction method to solve the problem with poor stability of AgNPs. Based on the plasma resonance effect of AgNPs, coral-like ZIFL-PDA@AgNPs had enhanced photothermal properties compared with ZIFL-PDA. Due to the synergistic effect between antibacterial metal ions mainly Ag+ and the photothermal effect, coral-like ZIFL-PDA@AgNPs showed enhanced anti-mature biofilm and antibacterial properties, which was dependent on its concentration and sterilization time. In addition, regulated by the ZIFL-PDA nanostructure, coral-like ZIFL-PDA@AgNPs demonstrated a unique Ag+ long-time sustained release behavior, giving it an extended antibacterial validity period and good biocompatibility. Antibacterial mechanism experiments indicated that coral-like ZIFL-PDA@AgNPs can significantly damage the integrity of bacterial cell membrane, reduce the content of ATP in bacterial by affecting the activity of succinate dehydrogenase, and induce the accumulation of reactive oxygen species, ultimately leading to bacterial death.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yi Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Bo Yi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xianxiang Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
4
|
Tang S, Wang Y, He P, Wang Y, Wei G. Recent Advances in Metal-Organic Framework (MOF)-Based Composites for Organic Effluent Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2660. [PMID: 38893925 PMCID: PMC11173850 DOI: 10.3390/ma17112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Environmental pollution caused by organic effluents emitted by industry has become a worldwide issue and poses a serious threat to the public and the ecosystem. Metal-organic frameworks (MOFs), comprising metal-containing clusters and organic bridging ligands, are porous and crystalline materials, possessing fascinating shape and size-dependent properties such as high surface area, abundant active sites, well-defined crystal morphologies, and huge potential for surface functionalization. To date, numerous well designated MOFs have emerged as critical functional materials to solve the growing challenges associated with water environmental issues. Here we present the recent progress of MOF-based materials and their applications in the treatment of organic effluents. Firstly, several traditional and emerging synthesis strategies for MOF composites are introduced. Then, the structural and functional regulations of MOF composites are presented and analyzed. Finally, typical applications of MOF-based materials in treating organic effluents, including chemical, pharmaceutical, textile, and agricultural wastewaters are summarized. Overall, this review is anticipated to tailor design and regulation of MOF-based functional materials for boosting the performance of organic effluent remediation.
Collapse
Affiliation(s)
| | | | | | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| |
Collapse
|
5
|
Alowasheeir A, Torad NL, Asahi T, Alshehri SM, Ahamad T, Bando Y, Eguchi M, Yamauchi Y, Terasawa Y, Han M. Synthesis of millimeter-scale ZIF-8 single crystals and their reversible crystal structure changes. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2292485. [PMID: 38259326 PMCID: PMC10802801 DOI: 10.1080/14686996.2023.2292485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024]
Abstract
Among various metal-organic frameworks (MOFs), the zeolitic imidazole framework (ZIF), constructed by the regular arrangement of 2-methylimidazole and metal ions, has garnered significant attention due to its distinctive crystals and pore structures. Variations in the sizes and shapes of ZIF crystals have been reported by changing the synthesis parameters, such as the molar ratios of organic ligands to metal ions, choice of solvents, and temperatures. Nonetheless, the giant ZIF-8 single crystals beyond the typical range have rarely been reported. Herein, we present the synthesis of millimeter-scale single crystal ZIF-8 using the solvothermal method in N,N-diethylformamide. The resulting 1-mm single crystal is carefully characterized through N2 adsorption-desorption isotherms, scanning electron microscopy, and other analytical techniques. Additionally, single-crystal X-ray diffraction is employed to comprehensively investigate the framework's mobility at various temperatures.
Collapse
Affiliation(s)
- Azhar Alowasheeir
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Nagy L. Torad
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Toru Asahi
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Saad M. Alshehri
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tansir Ahamad
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, Australia
| | - Miharu Eguchi
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Yukana Terasawa
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Shinjuku-ku, Tokyo, Japan
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto-shi, Kumamoto, Japan
| | - Minsu Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Liu QY, Wu Y, Bu ZQ, Quan MX, Lu JY, Huang WT. Sequential-Dependent Synthesis of Bimetallic Silver-Chromium Nanoparticles for Multichannel Sensing, Logic Computing, and 3 in 1 Information Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207436. [PMID: 37026417 DOI: 10.1002/smll.202207436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Bimetallic nanomaterials (BNMs) have been used in sensing, biomedicine, and environmental remediation, but their multipurpose and comprehensive applications in molecular logic computing and information security protection have received little attention. Herein, This synthesis method is achieved by sequentially adding reactants under ice bath conditions. Interestingly, Ag-Cr NPs can dynamically selectively sense anions and reductants in multiple channels. Especially, ClO- can be quantitatively detected by oxidizing Ag-Cr NPs with detection limits of 98.37 nM (at 270 nm) and 31.83 nM (at 394 nm). Based on sequential-dependent synthesis process of Ag-Cr NPs, Boolean logic gates and customizable molecular keypad locks are constructed by setting the reactants as the inputs, the states of the resulting solutions as the outputs. Furthermore, dynamically selective response patterns of the Ag-Cr NPs can be converted into binary strings to exploit molecular crypto-steganography to encode, store, and hide information. By integrating the three dimensions of authorization, encryption, and steganography, 3 in 1 advanced information protection based on Ag-Cr nanosensing system can be achieved, which can enhance the anti-cracking ability of information. This research will promote the development and application of nanocomposites in the field of information security and deepen the connection between molecular sensing and the information world.
Collapse
Affiliation(s)
- Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha, 410219, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
7
|
Xie W, Chen J, Cheng X, Feng H, Zhang X, Zhu Z, Dong S, Wan Q, Pei X, Wang J. Multi-Mechanism Antibacterial Strategies Enabled by Synergistic Activity of Metal-Organic Framework-Based Nanosystem for Infected Tissue Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205941. [PMID: 36587967 DOI: 10.1002/smll.202205941] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Drug-resistant bacterial infection impairs tissue regeneration and is a challenging clinical problem. Metal-organic frameworks (MOFs)-based photodynamic therapy (PDT) opens up a new era for antibiotic-free infection treatment. However, the MOF-based PDT normally encounters limited photon absorbance under visible light and notorious recombination of photogenerated holes and electrons, which significantly impede their applications. Herein, a MOFs-based nanosystem (AgNPs@MOFs) with enhanced visible light response and charge carrier separation is developed by modifying MOFs with silver nanoparticles (AgNPs) to improve PDT efficiency. The AgNPs@MOFs with enhanced photodynamic performance under visible light irradiation mainly disrupt bacteria translation process and the metabolism of purine and pyrimidine. In addition, the introduction of AgNPs endows nanosystems with chemotherapy ability, which causes destructive effect on bacterial cell membrane, including membrane ATPase protein and fatty acids. AgNPs@MOFs show excellent synergistic drug-resistant bacterial killing efficiency through multiple mechanisms, which further restrain bacterial resistance. In addition, biocompatible AgNPs@MOFs pose potential tissue regeneration ability in both Methicillin-resistant Staphylococcus aureus (MRSA)-related soft and hard tissue infection. Overall, this study provides a promising perspective in the exploration of AgNPs@MOFs as nano antibacterial medicine against drug-resistant bacteria for infected tissue regeneration in the future.
Collapse
Affiliation(s)
- Wenjia Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Hao Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shanshan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Preparation of Ag–Co@C–N Bimetallic Catalysts for Application to Nitroaromatic–Azoxybenzene Reduction Coupling. Catal Letters 2023. [DOI: 10.1007/s10562-023-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Akhtar MJ, Ahamed M. Photodeposition mediated synthesis of silver-doped indium oxide nanoparticles for improved photocatalytic and anticancer performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6055-6067. [PMID: 35986850 DOI: 10.1007/s11356-022-22594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Indium oxide nanoparticles (In2O3 NPs) are being investigated for a number of applications including gas-sensing, environmental remediation, and biomedicine. We aimed to examine the effect of silver (Ag) doping on photocatalytic and anticancer activity of In2O3 NPs. The Ag-doped (2%, 4%, and 6%weight) In2O3 NPs were synthesized by the photodeposition method. Prepared samples were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), UV-Vis spectroscopy, and the photoluminescence (PL). XRD data showed that Ag-doping increases the crystallinity of In2O3 NPs. SEM and TEM images indicated that In2O3 NPs have spherical morphology with smooth surfaces, and Ag-doping increases the size without affecting the particle's shape. XPS spectra showed the oxidation state and the presence of Ag in In2O3 NPs. Band gap energy of In2O3 NPs decreases with increasing the concentration of Ag (3.41 eV to 3.12 eV). The peak intensity of PL spectra of In2O3 NPs also reduces with the increment of Ag ions suggesting the hindrance of the recombination rate of e-/h+. The photocatalytic activity was measured by the degradation of Rh B dye under UV irradiation. The degradation efficiency of Ag-doped (6%) In2O3 NPs was 92%. Biochemical data indicated that Ag-doping enhances the anticancer performance of In2O3 NPs against human lung cancer cells (A549). Moreover, Ag-doped In2O3 NPs displayed excellent biocompatibility in normal human lung fibroblasts (IMR90). Overall, this study demonstrated that Ag-doping enhances the photocatalytic activity and anticancer efficacy of In2O3 NPs. This study warrants further investigation on the environmental and biomedical applications of Ag-In2O3 NPs.
Collapse
Affiliation(s)
- ZabnAllah M Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
10
|
Elaouni A, El Ouardi M, Zbair M, BaQais A, Saadi M, Ait Ahsaine H. ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Adv 2022; 12:31801-31817. [PMID: 36380941 PMCID: PMC9639128 DOI: 10.1039/d2ra05717d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Metal organic frameworks (MOFs) are attracting significant attention for applications including adsorption, chemical sensing, gas separation, photocatalysis, electrocatalysis and catalysis. In particular, zeolitic imidazolate framework 8 (ZIF-8), which is composed of zinc ions and imidazolate ligands, have been applied in different areas of catalysis due to its outstanding structural and textural properties. It possesses a highly porous structure and chemical and thermal stability under varying reaction conditions. When used alone in the reaction medium, the ZIF-8 particles tend to agglomerate, which inhibits their removal efficiency and selectivity. This results in their mediocre reusability and separation from aqueous conditions. Thus, to overcome these drawbacks, several well-designed ZIF-8 structures have emerged by forming composites and heterostructures and doping. This review focuses on the recent advances on the use of ZIF-8 structures (doping, composites, heterostructures, etc.) in the removal and photodegradation of persistent organic pollutants. We focus on the adsorption and photocatalysis of three main organic pollutants (methylene blue, rhodamine B, and malachite green). Finally, the key challenges, prospects and future directions are outlined to give insights into game-changing breakthroughs in this area.
Collapse
Affiliation(s)
- Aicha Elaouni
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - M El Ouardi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584, Toulon Cedex 9 F-83041 France
| | - M Zbair
- Université de Haute-Alsace, CNRS IS2M UMR 7361 F-68100 Mulhouse France
- Université de Strasbourg 67081 Strasbourg France
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| |
Collapse
|
11
|
Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications. Catal Letters 2022. [DOI: 10.1007/s10562-022-04140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Liu N, Zhang J, Wang Y, Zhu Q, Wang C, Zhang X, Duan J, Hou B, Sheng J. Combination of metal-organic framework with Ag-based semiconductor enhanced photocatalytic antibacterial performance under visible-light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Novel MOF-Based Photocatalyst AgBr/AgCl@ZIF-8 with Enhanced Photocatalytic Degradation and Antibacterial Properties. NANOMATERIALS 2022; 12:nano12111946. [PMID: 35683799 PMCID: PMC9182966 DOI: 10.3390/nano12111946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023]
Abstract
A novel visible light-driven AgBr/AgCl@ZIF-8 catalyst was synthesized by a simple and rapid method. The composition and structure of the photocatalyst were characterized by XRD, SEM, UV-DRS, and XPS. It could be observed that the 2-methylimidazole zinc salt (ZIF-8) exhibited the rhombic dodecahedron morphology with the AgCl and AgBr particles evenly distributed around it. The composite photocatalyst AgBr/AgCl@ZIF-8 showed good photocatalytic degradation and antibacterial properties. The degradation rate of RhB solution was 98%, with 60 min of irradiation of visible light, and almost all P. aeruginosaudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) were inactivated under the irradiation of 90 min. In addition, the prepared catalyst had excellent stability and reusability. Based on the free radical capture experiment, ·O2− and h+ were believed to be the main active substances, and possible photocatalytic degradation and sterilization mechanisms of AgBr/AgCl@ZIF-8 were proposed.
Collapse
|
14
|
Viswanathan VP, Divya KS, Dubal DP, Adarsh NN, Mathew S. Ag/AgCl@MIL-88A(Fe) heterojunction ternary composites: towards the photocatalytic degradation of organic pollutants. Dalton Trans 2021; 50:2891-2902. [PMID: 33544106 DOI: 10.1039/d0dt03147j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The efficient utilization of solar energy has received tremendous interest due to the increasing environmental and energy concerns. The present paper discusses the efficient integration of a plasmonic photocatalyst (Ag/AgCl) with an iron-based metal-organic framework (MIL-88A(Fe)) for boosting the visible light photoreactivity of MIL-88A(Fe). Two composites of Ag/AgCl@MIL-88A(Fe), namely MAG-1 and MAG-2 (stoichiometric ratio of Fe to Ag is 5 : 1 and 2 : 1), were successfully synthesized via facile in situ hydrothermal methods followed by UV reduction. The synthesized composite materials are characterized by FTIR, PXRD, UVDRS, PL, FESEM/EDX, TEM and BET analyses. The Ag/AgCl@MIL-88A(Fe) (MAG-2) hybrid system shows excellent photocatalytic activity for the degradation of p-nitrophenol (PNP), rhodamine B (RhB), and methylene blue (MB) under sunlight. We found that 91% degradation of PNP in 80 min, 99% degradation of RhB in 70 min and 94% degradation of MB in 70 min have taken place by using MAG-2 as a catalyst under sunlight. The superior activity of Ag/AgCl@MIL-88A(Fe) (MAG-2) is attributed to the synergistic effects from the surface plasmon resonance (SPR) of Ag NPs and the electron transfer from MIL-88A(Fe) to Ag nanoparticles for effective separation of electron-hole pairs. Furthermore, the mechanism of degradation of PNP, RhB and MB is proposed by analyzing the electron transfer pathway in Ag/AgCl@MIL-88A(Fe).
Collapse
Affiliation(s)
- Vandana P Viswanathan
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| | | | | | | | | |
Collapse
|
15
|
Chen X, Zhang Y, Kong X, Yao K, Liu L, Zhang J, Guo Z, Xu W, Fang Z, Liu Y. Photocatalytic Performance of the MOF-Coating Layer on SPR-Excited Ag Nanowires. ACS OMEGA 2021; 6:2882-2889. [PMID: 33553906 PMCID: PMC7860077 DOI: 10.1021/acsomega.0c05229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The photoactive metal-organic frameworks (MOFs) were controllably coated on the surface plasmon resonance-excited Ag nanowires in a layer manner to adjust the photocatalytic activity. The influence of the thickness of the MOF coating layer on the photocatalytic activity was investigated. A thicker MOF coating layer not only facilitated the photogenerated electron-hole separation efficiency but also provided a larger Brunauer-Emmett-Teller surface area, thus enhancing the photocatalytic activity. This work provided a new way to adjust the photocatalytic activity of the photoactive MOF.
Collapse
Affiliation(s)
- Xi Chen
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Yanshuang Zhang
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Xiangyun Kong
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Kun Yao
- Shenzhen
Zhongxing New Material Technology Company Ltd., Binhai 2nd Road 8, Dapeng New
District, Shenzhen 518000, People’s Republic of China
| | - Lingzhi Liu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Street
5625, Changchun 130022, People’s Republic of China
| | - Jiali Zhang
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Zanru Guo
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Wenyuan Xu
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Zhili Fang
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| | - Yongxin Liu
- School
of Materials Science and Engineering, East
China Jiaotong University, Shuanggang Road 808, Nanchang 330013, People’s Republic
of China
| |
Collapse
|
16
|
Jiang W, Lv M, Gao B, Liu B, Yan G, Zhou S, Liu C, Xie W, Che G. Facile construction of an Ag 0-doped Ag( i)-based coordination polymer via a self-photoreduction strategy for enhanced visible light driven photocatalysis. CrystEngComm 2021. [DOI: 10.1039/d1ce00699a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of Ag0-doped Ag(i)-based coordination polymers have been prepared via a facile self-photoreduction strategy, and can be utilized as efficient photocatalysts for photocatalytic degradation of methylene blue.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- College of Environmental Science and Engineering
| | - Mengying Lv
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
| | - Baihui Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
| | - Bo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Guosong Yan
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Shi Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- College of Environmental Science and Engineering
| | - Wei Xie
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun 130103
- P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| |
Collapse
|
17
|
Paulo de Campos da Costa J, Assis M, Teodoro V, Rodrigues A, Cristina de Foggi C, San-Miguel MA, Pereira do Carmo JP, Andrés J, Longo E. Electron beam irradiation for the formation of thick Ag film on Ag 3PO 4. RSC Adv 2020; 10:21745-21753. [PMID: 35516617 PMCID: PMC9054597 DOI: 10.1039/d0ra03179h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/30/2020] [Indexed: 11/21/2022] Open
Abstract
This study demonstrates that the electron beam irradiation of materials, typically used in characterization measurements, could be employed for advanced fabrication, modification, and functionalization of composites. We developed irradiation equipment using an electron beam irradiation source to be applied in materials modification. Using this equipment, the formation of a thick Ag film on the Ag3PO4 semiconductor is carried out by electron beam irradiation for the first time. This is confirmed by various experimental techniques (X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy) and ab initio molecular dynamics simulations. Our calculations demonstrate that, at the earlier stages, metallic Ag growth is initiated preferentially at the (110) surface, with the reduction of surface Ag cations forming metallic Ag clusters. As the (100) and (111) surfaces have smaller numbers of exposed Ag cations, the reductions on these surfaces are slower and are accompanied by the formation of O2 molecules. This study demonstrates that the electron beam irradiation of materials, typically used in characterization measurements, could be employed for advanced fabrication, modification, and functionalization of composites.![]()
Collapse
Affiliation(s)
- João Paulo de Campos da Costa
- Department of Electrical Engineering (SEL), University of São Paulo (USP) 13566-590 São Carlos Brazil.,Department of Chemistry, INCTMN, CDMF, Federal University of São Carlos (UFSCar) 13565-905 São Carlos Brazil
| | - Marcelo Assis
- Department of Chemistry, INCTMN, CDMF, Federal University of São Carlos (UFSCar) 13565-905 São Carlos Brazil
| | - Vinícius Teodoro
- Department of Chemistry, INCTMN, CDMF, Federal University of São Carlos (UFSCar) 13565-905 São Carlos Brazil
| | - Andre Rodrigues
- Department of Physical Chemistry, Institute of Chemistry, State University of Campinas-(UNICAMP) 13083-970 Campinas São Paulo Brazil
| | - Camila Cristina de Foggi
- Department of Chemistry, INCTMN, CDMF, Federal University of São Carlos (UFSCar) 13565-905 São Carlos Brazil
| | - Miguel Angel San-Miguel
- Department of Physical Chemistry, Institute of Chemistry, State University of Campinas-(UNICAMP) 13083-970 Campinas São Paulo Brazil
| | - João Paulo Pereira do Carmo
- Department of Electrical Engineering (SEL), University of São Paulo (USP) 13566-590 São Carlos Brazil.,R&D Centre MicroElectroMechanics (CMEMS), University of Minho Campus Azurem 4800-052 Guimaraes Portugal
| | - Juan Andrés
- Department of Analytical and Physical Chemistry, University Jaume I (UJI) Castelló 12071 Spain
| | - Elson Longo
- Department of Chemistry, INCTMN, CDMF, Federal University of São Carlos (UFSCar) 13565-905 São Carlos Brazil
| |
Collapse
|