1
|
Lin SM, Huang HT, Fang PJ, Chang CF, Satange R, Chang CK, Chou SH, Neidle S, Hou MH. Structural basis of water-mediated cis Watson-Crick/Hoogsteen base-pair formation in non-CpG methylation. Nucleic Acids Res 2024; 52:8566-8579. [PMID: 38989613 DOI: 10.1093/nar/gkae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Non-CpG methylation is associated with several cellular processes, especially neuronal development and cancer, while its effect on DNA structure remains unclear. We have determined the crystal structures of DNA duplexes containing -CGCCG- regions as CCG repeat motifs that comprise a non-CpG site with or without cytosine methylation. Crystal structure analyses have revealed that the mC:G base-pair can simultaneously form two alternative conformations arising from non-CpG methylation, including a unique water-mediated cis Watson-Crick/Hoogsteen, (w)cWH, and Watson-Crick (WC) geometries, with partial occupancies of 0.1 and 0.9, respectively. NMR studies showed that an alternative conformation of methylated mC:G base-pair at non-CpG step exhibits characteristics of cWH with a syn-guanosine conformation in solution. DNA duplexes complexed with the DNA binding drug echinomycin result in increased occupancy of the (w)cWH geometry in the methylated base-pair (from 0.1 to 0.3). Our structural results demonstrated that cytosine methylation at a non-CpG step leads to an anti→syntransition of its complementary guanosine residue toward the (w)cWH geometry as a partial population of WC, in both drug-bound and naked mC:G base pairs. This particular geometry is specific to non-CpG methylated dinucleotide sites in B-form DNA. Overall, the current study provides new insights into DNA conformation during epigenetic regulation.
Collapse
Affiliation(s)
- Shan-Meng Lin
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Ti Huang
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ju Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Ke Chang
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Stephen Neidle
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Ming-Hon Hou
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Cagiada M, Bottaro S, Lindemose S, Schenstrøm SM, Stein A, Hartmann-Petersen R, Lindorff-Larsen K. Discovering functionally important sites in proteins. Nat Commun 2023; 14:4175. [PMID: 37443362 PMCID: PMC10345196 DOI: 10.1038/s41467-023-39909-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Proteins play important roles in biology, biotechnology and pharmacology, and missense variants are a common cause of disease. Discovering functionally important sites in proteins is a central but difficult problem because of the lack of large, systematic data sets. Sequence conservation can highlight residues that are functionally important but is often convoluted with a signal for preserving structural stability. We here present a machine learning method to predict functional sites by combining statistical models for protein sequences with biophysical models of stability. We train the model using multiplexed experimental data on variant effects and validate it broadly. We show how the model can be used to discover active sites, as well as regulatory and binding sites. We illustrate the utility of the model by prospective prediction and subsequent experimental validation on the functional consequences of missense variants in HPRT1 which may cause Lesch-Nyhan syndrome, and pinpoint the molecular mechanisms by which they cause disease.
Collapse
Affiliation(s)
- Matteo Cagiada
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sandro Bottaro
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Lindemose
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Signe M Schenstrøm
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Dubini RA, Korytiaková E, Schinkel T, Heinrichs P, Carell T, Rovó P. 1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives. ACS PHYSICAL CHEMISTRY AU 2022; 2:237-246. [PMID: 35637781 PMCID: PMC9137243 DOI: 10.1021/acsphyschemau.1c00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10-20 kJ mol-1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC's subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.
Collapse
Affiliation(s)
- Romeo
C. A. Dubini
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany
| | - Eva Korytiaková
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thea Schinkel
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Pia Heinrichs
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Carell
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
4
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
5
|
Ličytė J, Kvederavičiūtė K, Rukšėnaitė A, Godliauskaitė E, Gibas P, Tomkutė V, Petraitytė G, Masevičius V, Klimašauskas S, Kriukienė E. Distribution and regulatory roles of oxidized 5-methylcytosines in DNA and RNA of the basidiomycete fungi Laccaria bicolor and Coprinopsis cinerea. Open Biol 2022; 12:210302. [PMID: 35232254 PMCID: PMC8889193 DOI: 10.1098/rsob.210302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The formation of three oxidative DNA 5-methylcytosine (5mC) modifications (oxi-mCs)-5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)-by the TET/JBP family of dioxygenases prompted intensive studies of their functional roles in mammalian cells. However, the functional interplay of these less abundant modified nucleotides in other eukaryotic lineages remains poorly understood. We carried out a systematic study of the content and distribution of oxi-mCs in the DNA and RNA of the basidiomycetes Laccaria bicolor and Coprinopsis cinerea, which are established models to study DNA methylation and developmental and symbiotic processes. Quantitative liquid chromatography-tandem mass spectrometry revealed persistent but uneven occurrences of 5hmC, 5fC and 5caC in the DNA and RNA of the two organisms, which could be upregulated by vitamin C. 5caC in RNA (5carC) was predominantly found in non-ribosomal RNA, which potentially includes non-coding, messenger and small RNA species. Genome-wide mapping of 5hmC and 5fC using the single CG analysis techniques hmTOP-seq and foTOP-seq pointed at involvement of oxi-mCs in the regulation of gene expression and silencing of transposable elements. The implicated diverse roles of 5mC and oxi-mCs in the two fungi highlight the epigenetic importance of the latter modifications, which are often neglected in standard whole-genome bisulfite analyses.
Collapse
Affiliation(s)
- Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Audronė Rukšėnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Eglė Godliauskaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Vita Tomkutė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Gražina Petraitytė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Viktoras Masevičius
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| |
Collapse
|
6
|
Lee JY, Park JW. Modified cytosines versus cytosine in a DNA polymerase: retrieving thermodynamic and kinetic constants at the single molecule level. Analyst 2021; 147:341-348. [PMID: 34935781 DOI: 10.1039/d1an02108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA methylation plays key roles in various areas, such as gene expression, regulation, epigenetics, and cancers. Since 5-methylcytosine (5mC) is commonly present in methylated DNA, characterizing the binding kinetics and thermodynamics of the nucleotide to the enzymatic pocket can help to understand the DNA replication process. Furthermore, 5-carboxycytosine (5caC) is a form that appears through the iterative oxidation of 5mC, and its effect on the DNA replication process is still not well known. Here, we immobilized a DNA polymerase (DNAP) with an orientation control on a tip of an atomic force microscope (AFM), and observed the interaction between the immobilized deoxyguanosine triphosphate (dGTP) on the surface and the DNAP in the presence of a DNA duplex. The interaction probability increased as the concentration of the DNA strand, and the affinity constant between the DNAP and DNA was obtained by fitting the change. Increasing the concentration of dGTP in solution diminished the interaction probability, and a fitting allowed us to retrieve the affinity constant between dGTP and the DNAP holding the DNA in the reaction pocket. Because the dissociation constant could be obtained through the loading rate dependence of the unbinding force value, both affinity and kinetic constants for cytosine (C), 5mC, and 5caC in the DNAP were compared in the light of the steric and electronic effect of the substituents at 5-position of cytosine.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| | - Joon Won Park
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea. .,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Interaction of Thymine DNA Glycosylase with Oxidised 5-Methyl-cytosines in Their Amino- and Imino-Forms. Molecules 2021; 26:molecules26195728. [PMID: 34641273 PMCID: PMC8510025 DOI: 10.3390/molecules26195728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Thymine DNA Glycosylase (TDG) is an enzyme of the base excision repair mechanism and removes damaged or mispaired bases from DNA via hydrolysis of the glycosidic bond. Specificity is of high importance for such a glycosylase, so as to avoid the damage of intact DNA. Among the substrates reported for TDG are mispaired uracil and thymine but also formyl-cytosine and carboxyl-cytosine. Methyl-cytosine and hydroxylmethyl-cytosine are, in contrast, not processed by the TDG enzyme. We have in this work employed molecular dynamics simulations to explore the conformational dynamics of DNA carrying a formyl-cytosine or carboxyl-cytosine and compared those to DNA with the non-cognate bases methyl-cytosine and hydroxylmethyl-cytosine, as amino and imino tautomers. Whereas for the mispairs a wobble conformation is likely decisive for recognition, all amino tautomers of formyl-cytosine and carboxyl-cytosine exhibit the same Watson–Crick conformation, but all imino tautomers indeed form wobble pairs. The conformational dynamics of the amino tautomers in free DNA do not exhibit differences that could be exploited for recognition, and also complexation to the TDG enzyme does not induce any alteration that would indicate preferable binding to one or the other oxidised methyl-cytosine. The imino tautomers, in contrast, undergo a shift in the equilibrium between a closed and a more open, partially flipped state, towards the more open form upon complexation to the TDG enzyme. This stabilisation of the more open conformation is most pronounced for the non-cognate bases methyl-cytosine and hydroxyl-cytosine and is thus not a likely mode for recognition. Moreover, calculated binding affinities for the different forms indicate the imino forms to be less likely in the complexed DNA. These findings, together with the low probability of imino tautomers in free DNA and the indifference of the complexed amino tautomers, suggest that discrimination of the oxidised methyl-cytosines does not take place in the initial complex formation.
Collapse
|
8
|
Korytiaková E, Kamińska E, Müller M, Carell T. Deformylation of 5-Formylcytidine in Different Cell Types. Angew Chem Int Ed Engl 2021; 60:16869-16873. [PMID: 34110681 PMCID: PMC8362038 DOI: 10.1002/anie.202107089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic programming of cells requires methylation of deoxycytidines (dC) to 5-methyl-dC (mdC) followed by oxidation to 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC). Subsequent transformation of fdC and cadC back to dC by various pathways establishes a chemical intra-genetic control circle. One of the discussed pathways involves the Tdg-independent deformylation of fdC directly to dC. Here we report the synthesis of a fluorinated fdC feeding probe (F-fdC) to study direct deformylation to F-dC. The synthesis was performed along a novel pathway that circumvents any F-dC as a reaction intermediate to avoid contamination interference. Feeding of F-fdC and observation of F-dC formation in vivo allowed us to gain insights into the Tdg-independent removal process. While deformylation was shown to occur in stem cells, we here provide data that prove deformylation also in different somatic cell types. We also investigated active demethylation in a non-dividing neurogenin-inducible system of iPS cells that differentiate into bipolar neurons.
Collapse
Affiliation(s)
- Eva Korytiaková
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Ewelina Kamińska
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Markus Müller
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| |
Collapse
|
9
|
Korytiaková E, Kamińska E, Müller M, Carell T. Deformylierung von 5‐Formylcytidin in unterschiedlichen Zelltypen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva Korytiaková
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Ewelina Kamińska
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Markus Müller
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Thomas Carell
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
10
|
Schelter F, Kirchner A, Traube FR, Müller M, Steglich W, Carell T. 5-Hydroxymethyl-, 5-Formyl- and 5-Carboxydeoxycytidines as Oxidative Lesions and Epigenetic Marks. Chemistry 2021; 27:8100-8104. [PMID: 33769637 PMCID: PMC8252671 DOI: 10.1002/chem.202100551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 01/20/2023]
Abstract
The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and α-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous. This vagueness is caused by the fact that these oxidized mdC derivatives are also formed as oxidative lesions, resulting in unclear basal levels that are likely to have no epigenetic function. Here, we report the xdC levels in the fungus Amanita muscaria in comparison to murine embryonic stem cells (mESCs), HEK cells and induced pluripotent stem cells (iPSCs), to obtain information about the basal levels of hmdC, fdC and cadC as DNA lesions in the genome.
Collapse
Affiliation(s)
- Florian Schelter
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Angie Kirchner
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeCB2 0REUK
| | | | - Markus Müller
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Wolfgang Steglich
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Thomas Carell
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
11
|
Dubini RCA, Schön A, Müller M, Carell T, Rovó P. Impact of 5-formylcytosine on the melting kinetics of DNA by 1H NMR chemical exchange. Nucleic Acids Res 2020; 48:8796-8807. [PMID: 32652019 PMCID: PMC7470965 DOI: 10.1093/nar/gkaa589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
5-Formylcytosine (5fC) is a chemically edited, naturally occurring nucleobase which appears in the context of modified DNA strands. The understanding of the impact of 5fC on dsDNA physical properties is to date limited. In this work, we applied temperature-dependent 1H Chemical Exchange Saturation Transfer (CEST) NMR experiments to non-invasively and site-specifically measure the thermodynamic and kinetic influence of formylated cytosine nucleobase on the melting process involving dsDNA. Incorporation of 5fC within symmetrically positioned CpG sites destabilizes the whole dsDNA structure-as witnessed from the ∼2°C decrease in the melting temperature and 5-10 kJ mol-1 decrease in ΔG°-and affects the kinetic rates of association and dissociation. We observed an up to ∼5-fold enhancement of the dsDNA dissociation and an up to ∼3-fold reduction in ssDNA association rate constants, over multiple temperatures and for several proton reporters. Eyring and van't Hoff analysis proved that the destabilization is not localized, instead all base-pairs are affected and the transition states resembles the single-stranded conformation. These results advance our knowledge about the role of 5fC as a semi-permanent epigenetic modification and assist in the understanding of its interactions with reader proteins.
Collapse
Affiliation(s)
- Romeo C A Dubini
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
| | - Alexander Schön
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Markus Müller
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Carell
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
| |
Collapse
|
12
|
Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int J Mol Sci 2020; 21:ijms21072473. [PMID: 32252452 PMCID: PMC7177219 DOI: 10.3390/ijms21072473] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
Collapse
|
13
|
Schön A, Kaminska E, Schelter F, Ponkkonen E, Korytiaková E, Schiffers S, Carell T. Analyse des aktiven Deformylierungsmechanismus von 5‐Formyl‐2′‐Desoxycytidin in Stammzellen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander Schön
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Ewelina Kaminska
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Florian Schelter
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Eveliina Ponkkonen
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Eva Korytiaková
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Sarah Schiffers
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians Universität München Butenandtstr. 5–13 81377 München Deutschland
| |
Collapse
|
14
|
Schön A, Kaminska E, Schelter F, Ponkkonen E, Korytiaková E, Schiffers S, Carell T. Analysis of an Active Deformylation Mechanism of 5-Formyl-deoxycytidine (fdC) in Stem Cells. Angew Chem Int Ed Engl 2020; 59:5591-5594. [PMID: 31999041 PMCID: PMC7155088 DOI: 10.1002/anie.202000414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/30/2022]
Abstract
The removal of 5‐methyl‐deoxycytidine (mdC) from promoter elements is associated with reactivation of the silenced corresponding genes. It takes place through an active demethylation process involving the oxidation of mdC to 5‐hydroxymethyl‐deoxycytidine (hmdC) and further on to 5‐formyl‐deoxycytidine (fdC) and 5‐carboxy‐deoxycytidine (cadC) with the help of α‐ketoglutarate‐dependent Tet oxygenases. The next step can occur through the action of a glycosylase (TDG), which cleaves fdC out of the genome for replacement by dC. A second pathway is proposed to involve C−C bond cleavage that converts fdC directly into dC. A 6‐aza‐5‐formyl‐deoxycytidine (a‐fdC) probe molecule was synthesized and fed to various somatic cell lines and induced mouse embryonic stem cells, together with a 2′‐fluorinated fdC analogue (F‐fdC). While deformylation of F‐fdC was clearly observed in vivo, it did not occur with a‐fdC, thus suggesting that the C−C bond‐cleaving deformylation is initiated by nucleophilic activation.
Collapse
Affiliation(s)
- Alexander Schön
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ewelina Kaminska
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Florian Schelter
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Eveliina Ponkkonen
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Eva Korytiaková
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Sarah Schiffers
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
15
|
Sanstead PJ, Ashwood B, Dai Q, He C, Tokmakoff A. Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA. J Phys Chem B 2020; 124:1160-1174. [PMID: 31986043 PMCID: PMC7136776 DOI: 10.1021/acs.jpcb.9b11511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The naturally occurring nucleobase 5-methylcytosine (mC) and its oxidized derivatives 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC) play important roles in epigenetic regulation and, along with cytosine (C), represent nucleobases currently implicated in the active cytosine demethylation pathway. Despite considerable interest in these modified bases, their impact on the thermodynamic stability of double-stranded DNA (dsDNA) remains ambiguous and their influence on hybridization kinetics and dynamics is even less well-understood. To address these unknowns, we employ steady-state and time-resolved infrared spectroscopy to measure the influence of cytosine modification on the thermodynamics and kinetics of hybridization by assessing the impact on local base pairing dynamics, shifts in the stability of the duplex state, and changes to the hybridization transition state. Modification with mC leads to more tightly bound base pairing below the melting transition and stabilizes the duplex relative to canonical DNA, but the free energy barrier to dehybridization at physiological temperature is nevertheless reduced slightly. Both hmC and fC lead to an increase in local base pair fluctuations, a reduction in the cooperativity of duplex melting, and a lowering of the dissociation barrier, but these effects are most pronounced when the 5-position is formylated. The caC nucleobase demonstrates little impact on dsDNA under neutral conditions, but we find that this modification can dynamically switch between C-like and fC-like behavior depending on the protonation state of the 5-position carboxyl group. Our results provide a consistent thermodynamic and kinetic framework with which to describe the modulation of the physical properties of double-stranded DNA containing these modified nucleobases.
Collapse
Affiliation(s)
- Paul J. Sanstead
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Wang LJ, Lu YY, Zhang CY. Construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. Chem Sci 2020; 11:587-595. [PMID: 32206275 PMCID: PMC7069502 DOI: 10.1039/c9sc04738g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA damage and repair are involved in multiple fundamental biological processes, including metabolism, disease, and aging. Inspired by the natural repair mechanism in vivo, we demonstrate for the first time the construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. The presence of DNA glycosylase can catalyze the excision repair of the damaged base, successively autostarting the self-directed replication through recycling polymerization extension and strand-displacement DNA synthesis for the generation of exponentially amplified dsDNAs. The resultant dsDNA products can be label-free and real-time monitored with SYBR Green I as the fluorescent indicator. Owing to the high efficiency of self-directed exponential replication and the absolute zero background resulting from the efficient inhibition of nonspecific amplification induced by multiple primer-dependent amplification, this strategy exhibits high sensitivity with a detection limit of 1 × 10-8 U μL-1 in vitro and 1 cell in vivo, and it can be further used to screen inhibitors, quantify DNA glycosylase from diverse cancer cells, and even monitor various repair enzymes by simply changing the specific damaged base in the DNA template. Importantly, this assay can be performed in a label-free, real-time and isothermal manner with the involvement of only a single type of polymerase, providing a simple, robust and universal platform for repair enzyme-related biomedical research and clinical therapeutics.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| | - Ying-Ying Lu
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| | - Chun-Yang Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| |
Collapse
|
17
|
DNA Modification Readers and Writers and Their Interplay. J Mol Biol 2019:S0022-2836(19)30718-1. [PMID: 31866298 DOI: 10.1016/j.jmb.2019.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Genomic DNA is modified in a postreplicative manner and several modifications, the enzymes responsible for their deposition as well as proteins that read these modifications, have been described. Here, we focus on the impact of DNA modifications on the DNA helix and review the writers and readers of cytosine modifications and how they interplay to shape genome composition, stability, and function.
Collapse
|