1
|
Yang H, Feng HX, Chen J, Zhou L. Strategies for the Synthesis of Mechanically Planar Chiral Rotaxanes. Chemistry 2025; 31:e202500898. [PMID: 40217105 DOI: 10.1002/chem.202500898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025]
Abstract
Rotaxanes, belonging to the class of classical mechanically interlocked molecules (MIMs), exhibit chiral properties that diverge from those of traditional chiral elements, particularly displaying mechanically planar chirality. Their distinctive spatial structure further augments their chiral significance, thereby imparting them with vast potential for applications in the realm of chiral materials and asymmetric catalysis. In recent years, mechanically planar chiral rotaxanes have garnered increasing attention from researchers. In this review, we summarize the recent advancements in obtaining enantiopure mechanically planar chiral rotaxanes. In this regard, chiral separation techniques, the use of chiral auxiliaries, and asymmetric catalytic synthesis have emerged as potent methodologies for constructing chiral rotaxanes, thereby enabling the synthesis of diverse types of mechanically planar chiral rotaxanes. Additionally, we analyze the current challenges faced in this field and look forward to the future development opportunities that lie ahead.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Hong-Xia Feng
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, 710125, China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
2
|
Wasternack J, Schröder HV, Witte JF, Ilisson M, Hupatz H, Hille JF, Gaedke M, Valkonen AM, Sobottka S, Krappe A, Schubert M, Paulus B, Rissanen K, Sarkar B, Eigler S, Resch-Genger U, Schalley CA. Switchable protection and exposure of a sensitive squaraine dye within a redox active rotaxane. Commun Chem 2024; 7:229. [PMID: 39367250 PMCID: PMC11452610 DOI: 10.1038/s42004-024-01312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
In nature, molecular environments in proteins can sterically protect and stabilize reactive species such as organic radicals through non-covalent interactions. Here, we report a near-infrared fluorescent rotaxane in which the stabilization of a chemically labile squaraine fluorophore by the coordination of a tetralactam macrocycle can be controlled chemically and electrochemically. The rotaxane can be switched between two co-conformations in which the wheel either stabilizes or exposes the fluorophore. Coordination by the wheel affects the squaraine's stability across four redox states and renders the radical anion significantly more stable-by a factor of 6.7-than without protection by a mechanically bonded wheel. Furthermore, the fluorescence properties can be tuned by the redox reactions in a stepwise manner. Mechanically interlocked molecules provide an excellent scaffold to stabilize and selectively expose reactive species in a co-conformational switching process controlled by external stimuli.
Collapse
Affiliation(s)
- Janos Wasternack
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - J Felix Witte
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Mihkel Ilisson
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Henrik Hupatz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Julian F Hille
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Marius Gaedke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Arto M Valkonen
- University of Jyvaskyla, Department of Chemistry, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
| | - Alexander Krappe
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
| | - Mario Schubert
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Siegfried Eigler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Biophotonics, Richard Willstätter Straße 11, 12489, Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany.
| |
Collapse
|
3
|
Goldup SM. The End of the Beginning of Mechanical Stereochemistry. Acc Chem Res 2024; 57:1696-1708. [PMID: 38830116 PMCID: PMC11191403 DOI: 10.1021/acs.accounts.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
ConspectusStereochemistry has played a key role in the development of synthetic chemistry for the simple reason that the function and properties of most molecules, from medicine to materials science, depend on their shape and thus the stereoisomer used. However, despite the potential for rotaxanes and catenanes to display unusual forms of stereochemistry being identified as early as 1961, this aspect of the mechanical bond remained underexplored and underexploited; until 2014 it was only possible to access chiral rotaxanes and catenanes whose stereoisomerism is solely attributable to the mechanical bond using chiral stationary phase high performance liquid chromatography, which limited their production on scale and thus inhibited the investigation of their properties and applications. Furthermore, the stereogenic units of such molecules and analogues were often poorly described, which made it hard to fully articulate both what had been achieved in the field and what problems were left to solve. Relatively recently, methods to access rotaxanes and catenanes that display mechanical stereochemistry selectively have been developed, making these intriguing structures available for study in a range of prototypical applications including catalysis, sensing, and as chiral luminophores.In this Account, we briefly discuss the history of mechanical stereochemistry, beginning in 1961 when the potential for mechanical stereoisomerism was first identified, before defining how mechanical stereochemistry arises from a structural point of view. Building on this, using simple stereochemical arguments, we confirm that the complete set of unique stereogenic units of two-component rotaxanes and catenanes have finally been identified and categorized unambiguously, with the last being identified only in 2024. After pausing to discuss some of the stereochemical curiosities that arise when molecules contain both covalent and mechanical stereogenic units, and the potential for stereoisomerism to arise due to co-conformational movement, we use our stereochemical framework to summarize our efforts to develop conceptually general approaches to [2]catenanes and [2]rotaxanes containing all of the possible mechanical stereogenic units. In particular, we highlight how the nature of a mechanical stereogenic unit affects the available strategies for their stereoselective synthesis. We finish by highlighting recent prototypical chemical applications of interlocked molecules that rely on their mechanical stereochemistry, before discussing future directions and challenges.Taken together, we propose that the transition of such molecules from being hard to make and poorly described, to being available in high stereopurity using clearly articulated methodological and stereochemical concepts suggests that the field is finally maturing. Thus, we are now coming to the end of the beginning of mechanical stereochemistry. The stage is now set for such molecules to play a functional role in a range of areas, indeed in any chemical or physical application where control over molecular shape is required.
Collapse
Affiliation(s)
- Stephen M. Goldup
- School of Chemistry, University
of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
4
|
Gallagher P, Savoini A, Saady A, Maynard JRJ, Butler PWV, Tizzard GJ, Goldup SM. Facial Selectivity in Mechanical Bond Formation: Axially Chiral Enantiomers and Geometric Isomers from a Simple Prochiral Macrocycle. J Am Chem Soc 2024; 146:9134-9141. [PMID: 38507717 PMCID: PMC10996000 DOI: 10.1021/jacs.3c14329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
In 1971, Schill recognized that a prochiral macrocycle encircling an oriented axle led to geometric isomerism in rotaxanes. More recently, we identified an overlooked chiral stereogenic unit in rotaxanes that arises when a prochiral macrocycle encircles a prochiral axle. Here, we show that both stereogenic units can be accessed using equivalent strategies, with a single weak stereodifferentiating interaction sufficient for moderate to excellent stereoselectivity. Using this understanding, we demonstrated the first direct enantioselective (70% ee) synthesis of a mechanically axially chiral rotaxane.
Collapse
Affiliation(s)
- Peter
R. Gallagher
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrea Savoini
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Abed Saady
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - John R. J. Maynard
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
| | - Patrick W. V. Butler
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
| | - Graham J. Tizzard
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
| | - Stephen M. Goldup
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
5
|
Saura-Sanmartin A. Synthesis of 'Impossible' Rotaxanes. Chemistry 2024; 30:e202304025. [PMID: 38168751 DOI: 10.1002/chem.202304025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
'Impossible' rotaxanes, which are constituted by interlocked components without obvious binding motifs, have attracted the interest of the mechanically interlocked molecules (MIMs) community. Within the synthetic efforts reported in the last decades towards the preparation of MIMs, some innovative protocols for accessing 'impossible' rotaxanes have been developed. This short review highlights different selected synthetic examples of 'impossible' rotaxanes, as well as suggests some future directions of this research area.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
6
|
Savoini A, Gallagher PR, Saady A, Goldup SM. The Final Stereogenic Unit of [2]Rotaxanes: Type 2 Geometric Isomers. J Am Chem Soc 2024; 146:8472-8479. [PMID: 38499387 PMCID: PMC10979452 DOI: 10.1021/jacs.3c14594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Mechanical stereochemistry arises when the interlocking of stereochemically trivial covalent subcomponents results in a stereochemically complex object. Although this general concept was identified in 1961, the stereochemical description of these molecules is still under development to the extent that new forms of mechanical stereochemistry are still being identified. Here, we present a simple analysis of rotaxane and catenane stereochemistry that allowed us to identify the final missing simple mechanical stereogenic unit, an overlooked form of rotaxane geometric isomerism, and demonstrate its stereoselective synthesis.
Collapse
Affiliation(s)
- Andrea Savoini
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Peter R. Gallagher
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Abed Saady
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Stephen M. Goldup
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
7
|
Puigcerver J, Marin-Luna M, Iglesias-Sigüenza J, Alajarin M, Martinez-Cuezva A, Berna J. Mechanically Planar-to-Point Chirality Transmission in [2]Rotaxanes. J Am Chem Soc 2024; 146:2882-2887. [PMID: 38266249 PMCID: PMC10859924 DOI: 10.1021/jacs.3c11611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Herein we describe an effective transmission of chirality, from mechanically planar chirality to point chirality, in hydrogen-bonded [2]rotaxanes. A highly selective mono-N-methylation of one (out of four) amide N atom at the macrocyclic counterpart of starting achiral rotaxanes generates mechanically planar chirality. Followed by chiral resolution, both enantiomers were subjected to a base-promoted intramolecular cyclization, where their interlocked threads were transformed into new lactam moieties. As a matter of fact, the mechanically planar chiral information was effectively transferred to the resulting stereocenters (covalent chirality) of the newly formed heterocycles. Upon removing the entwined macrocycle, the final lactams were obtained with high enantiopurity.
Collapse
Affiliation(s)
- Julio Puigcerver
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marta Marin-Luna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Javier Iglesias-Sigüenza
- Departamento
de Quimica Organica and Centro de Innovacion en Quimica Avanzada (ORFEO-CINQA), Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Mateo Alajarin
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
8
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Jelínková K, Závodná A, Kaleta J, Janovský P, Zatloukal F, Nečas M, Prucková Z, Dastychová L, Rouchal M, Vícha R. Two Squares in a Barrel: An Axially Disubstituted Conformationally Rigid Aliphatic Binding Motif for Cucurbit[6]uril. J Org Chem 2023; 88:15615-15625. [PMID: 37882436 PMCID: PMC10661032 DOI: 10.1021/acs.joc.3c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Novel binding motifs suitable for the construction of multitopic guest-based molecular devices (e.g., switches, sensors, data storage, and catalysts) are needed in supramolecular chemistry. No rigid, aliphatic binding motif that allows for axial disubstitution has been described for cucurbit[6]uril (CB6) so far. We prepared three model guests combining spiro[3.3]heptane and bicyclo[1.1.1]pentane centerpieces with imidazolium and ammonium termini. We described their binding properties toward CB6/7 and α-/β-CD using NMR, titration calorimetry, mass spectrometry, and single-crystal X-ray diffraction. We found that a bisimidazolio spiro[3.3]heptane guest forms inclusion complexes with CB6, CB7, and β-CD with respective association constants of 4.0 × 104, 1.2 × 1012, and 1.4 × 102. Due to less hindering terminal groups, the diammonio analogue forms more stable complexes with CB6 (K = 1.4 × 106) and CB7 (K = 3.8 × 1012). The bisimidazolio bicyclo[1.1.1]pentane guest forms a highly stable complex only with CB7 with a K value of 1.1 × 1011. The high selectivity of the new binding motifs implies promising potential in the construction of multitopic supramolecular components.
Collapse
Affiliation(s)
- Kristýna Jelínková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Aneta Závodná
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Jiří Kaleta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Petr Janovský
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Filip Zatloukal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Marek Nečas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 602 00, Czech Republic
| | - Zdeňka Prucková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Lenka Dastychová
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Michal Rouchal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Robert Vícha
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| |
Collapse
|
10
|
Wada K, Yasuzawa K, Fa S, Nagata Y, Kato K, Ohtani S, Ogoshi T. Diastereoselective Rotaxane Synthesis with Pillar[5]arenes via Co-crystallization and Solid-State Mechanochemical Processes. J Am Chem Soc 2023. [PMID: 37411034 DOI: 10.1021/jacs.3c02919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Chiral rotaxanes have attracted much attention in recent decades for their unique chirality based on their interlocked structures. Thus, selective synthesis methods of chiral rotaxanes have been developed. The introduction of substituents with chiral centers to produce diastereomers is a powerful strategy for the construction of chiral rotaxanes. However, in case of a small energy difference between the diastereomers, diastereoselective synthesis is extremely difficult. Herein, we report a new diastereoselective rotaxane synthesis method using solid-phase diastereoselective [3]pseudorotaxane formation and mechanochemical solid-phase end-capping reactions of the [3]pseudorotaxanes. By co-crystallization of stereodynamic planar chiral pillar[5]arene with stereogenic carbons at both rims and axles with suitable end groups and lengths, the [3]pseudorotaxane with a high diastereomeric excess (ca. 92% de) was generated in the solid state because of higher effective molarity with aid by packing effects and significant energy differences between [3]pseudorotaxane diastereomers. In contrast, the de of the pillar[5]arene was low in solution (ca. 10% de) because of a small energy difference between diastereomers. Subsequent end-capping reactions of the polycrystalline [3]pseudorotaxane with high de in solvent-free conditions successfully yielded rotaxanes while maintaining the high de generated by the co-crystallization.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kiichi Yasuzawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
11
|
Fu L, Wang R, Zhu Q, Gu Y, Zheng L, Chen Y, Jiang J, Ma J. Planar Chirality for Acid/Base Responsive Macrocyclic Pillararenes Induced by Amino Acid Derivatives: Molecular Dynamics Simulations and Machine Learning. J Chem Theory Comput 2023. [PMID: 37154217 DOI: 10.1021/acs.jctc.2c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chirality is ubiquitous in nature, ranging from a DNA helix to a biological macromolecule, snail's shell, and even a galaxy. However, the precise control of chirality at the nanoscale is a challenge due to the structure complexity of supramolecular assemblies, the small energy differences between different enantiomers, and the difficulty in obtaining polymorphic crystals. The planar chirality of water-soluble pillar[5]arenes (called WP5-Na with Na ions in the side chain) host triggered by the addition of chiral L-amino acid hydrochloride (L-AA-OEt) guests and acid/base is rationalized by the relative stability of different chiral isomers, being estimated by molecular dynamics (MD) simulations and quantum chemical calculations. As an increase in the pH value, the change from a positive to a negative value of the free energy difference (ΔG) between two conformations, pR-WP5-Na⊃L-AA-OEt and pS-WP5-Na⊃L-AA-OEt, suggests an inversed preference of the pS-WP5-Na conformer induced by the deprotonated L-arginine ethyl ester (L-Arg-OEt) at pH = 14, which is supported by the circular dichroism (CD) experiments. On the basis of 2256 WP5-Na⊃L-Ala-OEt and 3299 WP5-Na⊃L-Arg-OEt conformers sampled from MD, the gradient boosting regression (GBR) model exhibits a satisfactory performance (R2 = 0.91) in predicting the chirality of WP5-Na complexations using host-guest binding descriptors, including the geometry matching and binding sites and modes (electrostatics and hydrogen bonding). The machine learning model also performs well on external tests of different hosts (using different side chains and cavity sizes) with the addition of 22 other different guests, with the average chirality prediction accuracy of ML versus experimental CD determinations of 92.8%. The easily accessible host-guest features, binding position coordination and size matching between the cavity and guest, exhibit a close correlation to the chirality of different macrocyclic molecules, water-soluble pillar[6]arenes (WP6) versus WP5, in complexation with different amino acid guests. The exploration of efficient host-guest features in ML displays the great potential of building a large space of various assembled systems and accelerating the on-demand design of chiral supramolecular systems at the nanoscale.
Collapse
Affiliation(s)
- Lulu Fu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ranran Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Lifeng Zheng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juli Jiang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan 238200, P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
12
|
A chiral macrocycle for the stereoselective synthesis of mechanically planar chiral rotaxanes and catenanes. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Maynard JR, Gallagher P, Lozano D, Butler P, Goldup SM. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat Chem 2022; 14:1038-1044. [PMID: 35760959 PMCID: PMC7613450 DOI: 10.1038/s41557-022-00973-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Chirality typically arises in molecules because of a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two macrocycles with chemically distinct faces are joined to form a catenane, the structure is chiral, although the rings themselves are not. However, enantiopure mechanically axially chiral catenanes in which the mechanical bond provides the sole source of stereochemistry have not been reported. Here we re-examine the symmetry properties of these molecules and in doing so identify a straightforward route to access them from simple chiral building blocks. Our analysis also led us to identify an analogous but previously unremarked upon rotaxane stereogenic unit, which also yielded to our co-conformational auxiliary approach. With methods to access mechanically axially chiral molecules in hand, their properties and applications can now be explored.
Collapse
|
14
|
Rodríguez-Rubio A, Savoini A, Modicom F, Butler P, Goldup SM. A Co-conformationally "Topologically" Chiral Catenane. J Am Chem Soc 2022; 144:11927-11932. [PMID: 35763555 PMCID: PMC9348828 DOI: 10.1021/jacs.2c02029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catenanes composed of two achiral rings that are oriented (Cnh symmetry) because of the sequence of atoms they contain are referred to as topologically chiral. Here, we present the synthesis of a highly enantioenriched catenane containing a related but overlooked "co-conformationally 'topologically' chiral" stereogenic unit, which arises when a bilaterally symmetric Cnv ring is desymmetrized by the position of an oriented macrocycle.
Collapse
Affiliation(s)
- Arnau Rodríguez-Rubio
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Andrea Savoini
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Florian Modicom
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Patrick Butler
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Stephen M. Goldup
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| |
Collapse
|
15
|
|
16
|
Cho HL, Lai CC, Liu YH, Hsu HF, Peng SM, Chiu SH. Metal-Ion-Induced Mechanical Chirality: Achiral Rotaxane as the Only Ligand in Chiral Palladium(II)–N-Heterocyclic Carbene Complexes. Org Lett 2022; 24:1996-2001. [DOI: 10.1021/acs.orglett.2c00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hsien-Liang Cho
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, 145 Xingda Road, South District, Taichung 402, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsiu-Fu Hsu
- Department of Chemistry, Tamkang University, No.151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Formen JSSK, Wolf C. Chiroptical Switching and Quantitative Chirality Sensing with (Pseudo)halogenated Quinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Christian Wolf
- Department of Chemistry Georgetown University Washington DC 20057 USA
| |
Collapse
|
18
|
Formen JSSK, Wolf C. Chiroptical Switching and Quantitative Chirality Sensing with (Pseudo)halogenated Quinones. Angew Chem Int Ed Engl 2021; 60:27031-27038. [PMID: 34679202 DOI: 10.1002/anie.202111542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/11/2022]
Abstract
(Pseudo)halogenated quinones react smoothly with chiral amines, amino alcohols, and amino acids toward push-pull conjugates with optical sensing and switching applications. The chiroptically active conjugates serve as redox switches between two reversibly interconverting states with remarkably different UV and CD signatures. Addition of sodium borohydride generates a hydroquinone derivative that is quantitatively re-oxidized to the original quinone upon exposure to air. This chiroptical quinone/hydroquinone redox switch system combines several attractive features such as simple set-up, use of inexpensive chemicals, short response time, and thermal and photochemical stability. A conceptually new sensing approach that is based on integrated chiroptical amplification and redox switching enables on-the-fly deconvolution of otherwise overlapping CD spectra and is used for quantitative er analysis of challenging samples containing constitutional isomers in varying enantiomeric compositions.
Collapse
Affiliation(s)
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
19
|
A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat Chem 2021; 14:179-187. [PMID: 34845345 PMCID: PMC7612332 DOI: 10.1038/s41557-021-00825-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022]
Abstract
Rotaxanes can display molecular chirality solely due to the mechanical bond between the axle and encircling macrocycle without the presence of covalent stereogenic units. However, the synthesis of such molecules remains challenging. We have discovered a combination of reaction partners that function as a chiral interlocking auxiliary to both orientate a macrocycle and, effectively, load it onto a new axle. Here we use these substrates to demonstrate the potential of a chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes by producing a range of examples in high enantiopurity (93–99% e.e.), including so-called ‘impossible’ rotaxanes whose axles lack any functional groups that would allow their direct synthesis by other means. Intriguingly, by varying the order of bond-forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, enabling the synthesis of both hands of a single target using the same reactions and building blocks.
Collapse
|
20
|
Tajima S, Muranaka A, Naito M, Taniguch N, Harada M, Miyagawa S, Ueda M, Takaya H, Kobayashi N, Uchiyama M, Tokunaga Y. Synthesis of a Mechanically Planar Chiral and Axially Chiral [2]Rotaxane. Org Lett 2021; 23:8678-8682. [PMID: 34730985 DOI: 10.1021/acs.orglett.1c02983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we synthesized a [2]rotaxane that was both mechanically planar chiral and axially chiral, comprising a symmetrical bis-crown ether featuring a biphenyl moiety (as the macrocyclic component) and a symmetrical bis-ammonium salt (as the dumbbell-shaped component).
Collapse
Affiliation(s)
- Shinya Tajima
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Noriho Taniguch
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Masahiro Ueda
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Hikaru Takaya
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.,Institute for Molecular Science, National Institute of Natural Science, Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
21
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
22
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
23
|
McCarney EP, Lovitt JI, Gunnlaugsson T. Mechanically Interlocked Chiral Self-Templated [2]Catenanes from 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Ligands. Chemistry 2021; 27:12052-12057. [PMID: 34106499 PMCID: PMC8457180 DOI: 10.1002/chem.202101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/24/2022]
Abstract
We report the efficient self-templated formation of optically active 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) derived homocircuit [2]catenane enantiomers. This represents the first example of the enantiopure formation of chiral btp homocircuit [2]catenanes from starting materials consisting of a classical chiral element; X-ray diffraction crystallography enabled the structural characterization of the [2]catenane. The self-assembly reaction was monitored closely in solution facilitating the characterization of the pseudo-rotaxane reaction intermediate prior to mechanically interlocking the pre-organised system via ring-closing metathesis.
Collapse
Affiliation(s)
- Eoin P. McCarney
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - June I. Lovitt
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| |
Collapse
|
24
|
Morise T, Muranaka A, Ban H, Harada M, Naito M, Yoshida K, Kobayashi N, Uchiyama M, Tokunaga Y. A Chiral [3]Rotaxane Comprising Achiral Bis-macrocyclic and Dumbbell-Shaped Components. Org Lett 2021; 23:2120-2124. [PMID: 33689384 DOI: 10.1021/acs.orglett.1c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, we synthesized a molecularly chiral [3]rotaxane comprising a calix-bis-crown ether (as the macrocyclic component) and two unsymmetrical dialkylammonium salts (as dumbbell-shaped components) without any chirality in any of the individual components. Chiral high-performance liquid chromatography was used to separate the enantiomers, which were characterized by circular dichroism spectroscopy. Density functional theory calculations gave an insight into the absolute configuration of each [3]rotaxane.
Collapse
Affiliation(s)
- Takaaki Morise
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Atsuya Muranaka
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hayato Ban
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Kazuyuki Yoshida
- Forensic Science Laboratory, Fukui Prefectural Police Headquarters, Ohte, Fukui 910-8515, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
25
|
Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. AIE‐Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Qingyi Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yu‐Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
26
|
Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. AIE‐Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:9507-9515. [DOI: 10.1002/anie.202100934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Qingyi Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yu‐Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
27
|
A Multiple Chirality Switching Device for Spatial Light Modulators. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Yang G, Yu Y, Yang B, Lu T, Cai Y, Yin H, Zhang H, Zhang NN, Li L, Zhang YM, Zhang SXA. A Multiple Chirality Switching Device for Spatial Light Modulators. Angew Chem Int Ed Engl 2021; 60:2018-2023. [PMID: 32885573 DOI: 10.1002/anie.202009916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Indexed: 12/25/2022]
Abstract
A new and simple strategy towards electric-field-driven multiple chirality switching device has been designed and fabricated by combining a newly synthesized base-responsive chiroptical polymer switch (R-FLMA) and p-benzoquinone (p-BQ) via proton-coupled electron transfer (PCET) mechanism. Clear and stable triple chirality states (silence, positive, negative) of this device in visible band can be regulated reversibly (>1000 cycles) by adjusting voltage programs. Furthermore, such chiral switching phenomena are also accompanied by apparent changes of color and fluorescence. More importantly, the potential application of this device for a spatial light modulator has also been demonstrated.
Collapse
Affiliation(s)
- Guojian Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Yang Yu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Baige Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Yiru Cai
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Hang Yin
- Institute of Atom and Molecular Physics, Jilin University, Changchun, P. R. China
| | - Huiqi Zhang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Li Li
- College of Chemistry, Jilin University, Changchun, P. R. China.,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, P. R. China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
29
|
Wang Y, Lu S, Wang XQ, Niu YF, Wang H, Wang W. Synthesis, structure elucidation and functionalization of sulfonamide [2]catenanes. Org Chem Front 2021. [DOI: 10.1039/d1qo00691f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pyrene-functionalized [2]catenane with switchable optical output was constructed through a novel sulfonamide [2]catenane synthesized by a self-templation approach.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Yan-Fei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
30
|
Gaedke M, Hupatz H, Schröder HV, Suhr S, Hoffmann KF, Valkonen A, Sarkar B, Riedel S, Rissanen K, Schalley CA. Dual-stimuli pseudorotaxane switches under kinetic control. Org Chem Front 2021. [DOI: 10.1039/d1qo00503k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dual-stimuli pseudorotaxane switches: Threaded complexes dissociate upon deprotonation or oxidation. A mechanical bond changes the influence of a ‘speed bump’ on the outcome of a switching event.
Collapse
Affiliation(s)
- Marius Gaedke
- Institut für Chemie und Biochemie der Freien Universität Berlin
- 14195 Berlin
- Germany
| | - Henrik Hupatz
- Institut für Chemie und Biochemie der Freien Universität Berlin
- 14195 Berlin
- Germany
| | - Hendrik V. Schröder
- Institut für Chemie und Biochemie der Freien Universität Berlin
- 14195 Berlin
- Germany
| | - Simon Suhr
- Lehrstuhl für Anorganische Koordinationschemie
- Institut für Anorganische Chemie
- Universität Stuttgart
- 70569 Stuttgart
- Germany
| | - Kurt F. Hoffmann
- Institut für Chemie und Biochemie der Freien Universität Berlin
- Berlin
- Germany
| | - Arto Valkonen
- Department of Chemistry P.O. Box 35
- 40014 Jyväskylä
- Finland
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie
- Institut für Anorganische Chemie
- Universität Stuttgart
- 70569 Stuttgart
- Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie der Freien Universität Berlin
- Berlin
- Germany
| | - Kari Rissanen
- Department of Chemistry P.O. Box 35
- 40014 Jyväskylä
- Finland
| | | |
Collapse
|
31
|
Pairault N, Bessaguet A, Barat R, Frédéric L, Pieters G, Crassous J, Opalinski I, Papot S. Diastereoselective synthesis of [1]rotaxanes via an active metal template strategy. Chem Sci 2020; 12:2521-2526. [PMID: 34164020 PMCID: PMC8179266 DOI: 10.1039/d0sc05369d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite the impressive number of interlocked molecules described in the literature over the past 30 years, only a few stereoselective syntheses of mechanically chiral rotaxanes have been reported so far. In this study, we present the first diastereoselective synthesis of mechanically planar chiral [1]rotaxanes, that has been achieved using the active template Cu-mediated alkyne–azide cycloaddition reaction. This synthetic method has been applied to the preparation of a [1]rotaxane bearing a labile stopper that can then be substituted without disruption of the mechanical bond. This approach paves the way for the synthesis of a wide variety of mechanically planar chiral [1]rotaxanes, hence allowing the study of the properties and potential applications of this class of interlocked molecular architectures. The first diastereoselective synthesis of mechanically planar chiral [1]rotaxanes has been achieved using the active template Cu-mediated alkyne–azide cycloaddition reaction.![]()
Collapse
Affiliation(s)
- Noël Pairault
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Adrien Bessaguet
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Romain Barat
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Lucas Frédéric
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM F-91191 Gif-sur-Yvette France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM F-91191 Gif-sur-Yvette France
| | - Jeanne Crassous
- Université de Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226 Campus de Beaulieu Rennes 35042 France
| | - Isabelle Opalinski
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Sébastien Papot
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| |
Collapse
|
32
|
Hupatz H, Gaedke M, Schröder HV, Beerhues J, Valkonen A, Klautzsch F, Müller S, Witte F, Rissanen K, Sarkar B, Schalley CA. Thermodynamic and electrochemical study of tailor-made crown ethers for redox-switchable (pseudo)rotaxanes. Beilstein J Org Chem 2020; 16:2576-2588. [PMID: 33133289 PMCID: PMC7590624 DOI: 10.3762/bjoc.16.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Crown ethers are common building blocks in supramolecular chemistry and are frequently applied as cation sensors or as subunits in synthetic molecular machines. Developing switchable and specifically designed crown ethers enables the implementation of function into molecular assemblies. Seven tailor-made redox-active crown ethers incorporating tetrathiafulvalene (TTF) or naphthalene diimide (NDI) as redox-switchable building blocks are described with regard to their potential to form redox-switchable rotaxanes. A combination of isothermal titration calorimetry and voltammetric techniques reveals correlations between the binding energies and redox-switching properties of the corresponding pseudorotaxanes with secondary ammonium ions. For two different weakly coordinating anions, a surprising relation between the enthalpic and entropic binding contributions of the pseudorotaxanes was discovered. These findings were applied to the synthesis of an NDI-[2]rotaxane, which retains similar spectroelectrochemical properties compared to the corresponding free macrocycle. The detailed understanding of the thermodynamic and electrochemical properties of the tailor-made crown ethers lays the foundation for the construction of new types of molecular redox switches with emergent properties.
Collapse
Affiliation(s)
- Henrik Hupatz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Marius Gaedke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.,present address: Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ08544, USA
| | - Julia Beerhues
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,present address: Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Arto Valkonen
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, 40014 Jyväskylä, Finland
| | - Fabian Klautzsch
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Sebastian Müller
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Felix Witte
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, 40014 Jyväskylä, Finland
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,present address: Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| |
Collapse
|
33
|
Taghavi Shahraki B, Maghsoudi S, Fatahi Y, Rabiee N, Bahadorikhalili S, Dinarvand R, Bagherzadeh M, Verpoort F. The flowering of Mechanically Interlocked Molecules: Novel approaches to the synthesis of rotaxanes and catenanes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
|
35
|
Koenis MAJ, Chibueze CS, Jinks MA, Nicu VP, Visscher L, Goldup SM, Buma WJ. Vibrational circular dichroism spectroscopy for probing the expression of chirality in mechanically planar chiral rotaxanes. Chem Sci 2020; 11:8469-8475. [PMID: 34123106 PMCID: PMC8163398 DOI: 10.1039/d0sc02485f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
Mechanically interlocked molecules can exhibit molecular chirality that arises due to the mechanical bond rather than covalent stereogenic units. Developing applications of such systems is made challenging by the absence of techniques for assigning the absolute configuration of products and methods to probe how the mechanical stereogenic unit influences the spatial arrangements of the functional groups in solution. Here we demonstrate for the first time that Vibrational Circular Dichroism (VCD) can be used to not only discriminate between mechanical stereoisomers but also provide detailed information on their (co)conformations. The latter is particularly important as these molecules are now under investigation in catalysis and sensing, both of which rely on the solution phase shape of the interlocked structure. Detailed analysis of the VCD spectra shows that, although many of the signals arise from coupled oscillators isolated in the covalent sub-components, intercomponent coupling between the macrocycle and axle gives rise to several VCD bands.
Collapse
Affiliation(s)
- Mark A J Koenis
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - C S Chibueze
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M A Jinks
- Department of Chemistry, University of Southampton University Road, Highfield Southampton SO17 1BJ UK
| | - Valentin P Nicu
- Department of Environmental Science, Physics, Physical Education and Sport, Lucian Blaga University of Sibiu loan Ratiu Street, Nr. 7-9 550012 Sibiu Romania
| | - Lucas Visscher
- Amsterdam Center for Multiscale Modeling, Section Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - S M Goldup
- Department of Chemistry, University of Southampton University Road, Highfield Southampton SO17 1BJ UK
| | - Wybren J Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| |
Collapse
|
36
|
Dang LL, Gao X, Lin YJ, Jin GX. Selective synthesis and structural transformation between a molecular ring-in-ring architecture and an abnormal trefoil knot. Chem Sci 2020; 11:8013-8019. [PMID: 34094170 PMCID: PMC8163296 DOI: 10.1039/d0sc02733b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of complicated supramolecular architectures and the study of their reversible structural transformations remains a fascinating challenge in the field of supramolecular chemistry. Herein, two types of novel coordination compounds, a non-intertwined ring-in-ring assembly and an abnormal trefoil knot were constructed from a strategically selected Cp*Rh building block and a semi-rigid N,N'-bis(4-pyridylmethyl)diphthalic diimide ligand via coordination-driven self-assembly. Remarkably, the reversible transformation between the abnormal trefoil knot and the ring-in-ring assembly or the corresponding tetranuclear macrocycle could be achieved by the synergistic effects of Ag+ ion coordination and alteration of the solvent. Single-crystal X-ray crystallographic data and NMR spectroscopic experiments support the structural assignments.
Collapse
Affiliation(s)
- Li-Long Dang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Yue-Jian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
37
|
Martinez-Cuezva A, Saura-Sanmartin A, Alajarin M, Berna J. Mechanically Interlocked Catalysts for Asymmetric Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02032] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alberto Martinez-Cuezva
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Adrian Saura-Sanmartin
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Mateo Alajarin
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
38
|
Tian C, Fielden SDP, Pérez-Saavedra B, Vitorica-Yrezabal IJ, Leigh DA. Single-Step Enantioselective Synthesis of Mechanically Planar Chiral [2]Rotaxanes Using a Chiral Leaving Group Strategy. J Am Chem Soc 2020; 142:9803-9808. [PMID: 32356978 PMCID: PMC7266371 DOI: 10.1021/jacs.0c03447] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
We report a one-step
enantioselective synthesis of mechanically
planar chiral [2]rotaxanes. Previous studies of such molecules have
generally involved the separation of enantiomers from racemic mixtures
or the preparation and separation of diastereomeric intermediates
followed by post-assembly modification to remove other sources of
chirality. Here, we demonstrate a simple asymmetric metal-free active
template rotaxane synthesis using a primary amine, an activated ester
with a chiral leaving group, and an achiral crown ether lacking rotational
symmetry. Mechanically planar chiral rotaxanes are obtained directly
in up to 50% enantiomeric excess. The rotaxanes were characterized
by NMR spectroscopy, high-resolution mass spectrometry, chiral HPLC,
single crystal X-ray diffraction, and circular dichroism. Either rotaxane
enantiomer could be prepared selectively by incorporating pseudoenantiomeric
cinchona alkaloids into the chiral leaving group.
Collapse
Affiliation(s)
- Chong Tian
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stephen D P Fielden
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Borja Pérez-Saavedra
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.,School of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, China
| |
Collapse
|
39
|
Abstract
Recent progress in chiroptical switches including on/off, amplification, and inversion of the chiral signals such as ECD and CPL in supramolecular assemblies is shown.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Han-Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Shuai Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|