1
|
Nasrullah AA, Zander E, Dankert F, Petrov A, Surkau J, Baráth E, Hering-Junghans C. Coordination isomerism in dioxophosphorane cyanides. Chem Sci 2025; 16:6909-6917. [PMID: 40123690 PMCID: PMC11924112 DOI: 10.1039/d4sc07636b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
The 1,3-phosphaazaallene DippTerP = C=NtBu (DippTer = 2,6-(2,6-iPr2C6H3)2-C6H3) is thermally labile towards iso-butene elimination and formation of the corresponding cyanophosphine DippTerP(H)CN (1). In previous work we have shown facile deprotonation of 1 with K[N(SiMe3)2 and formation of cyanophosphide [(DippTerPCN)K]. We now present the alkali metal tethered cyanophosphides [(DippTerPCN)M(crown)] (M = Na, K; crown = 15-c-5, 18-c-6) and their structural diversity in the solid state depending on the metal (M) and the crown ether. Facile oxidation of [DippTerPCN][M(crown)] with O2 yields the formal cyanide adducts of dioxophosphoranes [DippTerPO2(CN)]-. Surprisingly, [DippTerPO2(CN)]- is obtained as a mixture of the cyanide and isocyanide isomers, indicating a coordination isomerism. This phenomenon is corroborated by experimental and theoretical studies revealing the cyanide isomer to be thermodynamically more stable. The oxidation with elemental sulphur gave the corresponding dithiophosphorane cyanide adduct [DippTerPS2(CN)]-, in which no isomerism was observed. This points to a crucial role of triplet oxygen in the isomerisation process. Monooxidation occurs when [DippTerPO2(CN)]- salts were treated with N2O, giving formal anionic phoshinidene monoxide adducts.
Collapse
Affiliation(s)
- Ayu Afiqah Nasrullah
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein-Str. 29a 18059 Rostock Germany
- Pusat Persediaan Sains dan Teknologi, Universiti Malaysia Sabah Jln UMS 88400 Kota Kinabalu Sabah Malaysia
| | - Edgar Zander
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein-Str. 29a 18059 Rostock Germany
| | - Fabian Dankert
- Universität Kassel, Institut für Chemie Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Andrey Petrov
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein-Str. 29a 18059 Rostock Germany
| | - Jonas Surkau
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Germany
| | - Eszter Baráth
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein-Str. 29a 18059 Rostock Germany
| | | |
Collapse
|
2
|
Jürgensen M, Kunz T, Arrowsmith M, Dietz M, Hagspiel S, Braunschweig H. Synthesis and reactivity of a parent phosphathioethynolato-borane and a boraarsaketene. Chem Sci 2025:d5sc01996f. [PMID: 40271024 PMCID: PMC12012630 DOI: 10.1039/d5sc01996f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
We present the synthesis and isolation of the first main-group phosphathioethynolates, [LBH2(SCP)] (L = SIMes, CAACMe; SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene, CAACMe = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene), in which phosphathioethynolate coordination occurs exclusively through the sulfur atom, giving rise to a phosphaalkyne-type structural motif. This is reflected in the reactivity of the SIMes derivative towards organic azides and [(η2-C2H4)2CoCp] (Cp = C5H5), which mirrors the behavior of 1-adamantylphosphaalkyne, yielding triazaphospholes and a mixed cyclopentadienyl-(1,3-diphosphete) sandwich complex, respectively. Deviations from typical phosphaalkyne reactivity are observed in reactions with boron-containing heterocycles such as pentaphenylborole (PPB) and a carboranyl-substituted 9-borafluorene, which yield an unprecedented bicyclic structure and a zwitterionic spiro compound, respectively. Furthermore, we report the synthesis of the first arsaketenylborane, [(SIMes)BH2(AsCO)], which, although too unstable for isolation, generates an arsinidene in situ, which can be trapped by coordination to a PPB C[double bond, length as m-dash]C double bond.
Collapse
Affiliation(s)
- Malte Jürgensen
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Tanja Kunz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Stephan Hagspiel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
3
|
Albert T, Pence N, Zhong F, Pletneva EV, Moënne-Loccoz P. A single outer-sphere amino-acid substitution turns on the NO reactivity of a hemerythrin-like protein. Chem Sci 2025; 16:3238-3245. [PMID: 39840292 PMCID: PMC11744678 DOI: 10.1039/d4sc07529c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Mycobacterial hemerythrin-like proteins (HLPs) are important for the survival of pathogens in macrophages. Their molecular mechanisms of function remain poorly defined but recent studies point to their possible role in nitric oxide (NO) scavenging. Unlike any nonheme diiron protein studied so far, the diferric HLP from Mycobacterium kansasii (Mka-HLP) reacts with NO in a multistep fashion to consume four NO molecules per diiron center. HLPs are largely conserved across mycobacteria and we argued that comparative studies of distant orthologs may illuminate the role of the protein scaffold in this reactivity and yield intermediates with properties more favorable for detailed spectroscopic characterization. Herein, we show that HLP from Azotobacter vinelandii (Avi-HLP) requires a single T47F point mutation in the outer sphere of its diferric center to adopt a bridging μ-oxo diferric structure as in Mka-HLP and makes it reactive toward NO. Radical combination of NO with the μ-oxo bridge yields nitrite and a mixed valent Fe(iii)Fe(ii) cluster that further react with NO to produce a stable magnetically coupled Fe(iii){FeNO}7 cluster. We report characterization of this stable cluster by electronic absorption, EPR, FTIR and resonance Raman spectroscopies and suggest ways Phe 46 (Mka numbering) might control the Fe(iii) reduction potential and the NO reactivity of HLPs.
Collapse
Affiliation(s)
- Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University 3181 SW Sam Jackson Park Road Portland Oregon 97239 USA
| | - Natasha Pence
- Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA
| | - Fangfang Zhong
- Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA
| | | | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University 3181 SW Sam Jackson Park Road Portland Oregon 97239 USA
| |
Collapse
|
4
|
Lu B, Jiang J, Wang L, Jupp AR, Goicoechea JM, Liu S, Li Z, Zhou M, Zeng X. Carbamoylphosphinidene: A Phosphorus Analogue of Carbonyl Nitrene. J Am Chem Soc 2024; 146:18699-18705. [PMID: 38943601 DOI: 10.1021/jacs.4c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Carbonyl nitrenes are versatile intermediates that have been extensively characterized; however, their phosphorus analogues remain largely unknown. Herein, we report the observation of a rare example of carbonyl phosphinidene NH2C(O)P, which was generated through the photolytic (193 nm) dehydrogenation of phosphinecarboxamide (NH2C(O)PH2) in a solid N2-matrix at 12 K. The characterization of NH2C(O)P in the triplet ground state with matrix-isolation IR and ultraviolet-visible (UV-vis) spectroscopy is supported by comprehensive isotope labeling experiments (D and 15N) and quantum chemical calculations. Upon visible-light irradiation at 680 nm, NH2C(O)P inserts into dihydrogen by the reformation of NH2C(O)PH2 with concomitant isomerization to the more stable aminophosphaketene (NH2PCO). Additionally, the photoisomerization of NH2C(O)PH2 to NH2C(OH) = PH along with decomposition by yielding hydrogen-bonded complexes HNCO···PH3 and HPCO···NH3 has been observed in the matrix.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Andrew R Jupp
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jose M Goicoechea
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| |
Collapse
|
5
|
Li J, Wang XF, Hu C, Liu LL. Carbene-Stabilized Phosphagermylenylidene: A Heavier Analog of Isonitrile. J Am Chem Soc 2024; 146:14341-14348. [PMID: 38726476 DOI: 10.1021/jacs.4c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Phosphagermylenylidenes (R-P═Ge), as heavier analogs of isonitriles, whether in their free state or as complexes with a Lewis base, have not been previously identified as isolable entities. In this study, we report the synthesis of a stable monomeric phosphagermylenylidene within the coordination sphere of a Lewis base under ambient conditions. This species was synthesized by Lewis base-induced dedimerization of a cyclic phosphagermylenylidene dimer or via Me3SiCl elimination from a phosphinochlorogermylene framework. The deliberate integration of a bulky, electropositive N-heterocyclic boryl group at the phosphorus site, combined with coordination stabilization by a cyclic (alkyl)(amino)carbene at the low-valent germanium site, effectively mitigated its natural tendency toward oligomerization. Structural analyses and theoretical calculations have demonstrated that this unprecedented species features a P═Ge double bond, characterized by conventional electron-sharing π and σ bonds, complemented by lone pairs at both the phosphorus and germanium atoms. Preliminary reactivity studies show that this base-stabilized phosphagermylenylidene demonstrates facile release of ligands at the Ge atom, coordination to silver through the lone pair on P, and versatile reactivity including both (cyclo)addition and cleavage of the P═Ge double bond.
Collapse
Affiliation(s)
- Jiancheng Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Feng Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Saint-Denis TG, Wheeler TA, Chen Q, Balázs G, Settineri NS, Scheer M, Tilley TD. A Ruthenophosphanorcaradiene as a Synthon for an Ambiphilic Metallophosphinidene. J Am Chem Soc 2024; 146:4369-4374. [PMID: 38335065 PMCID: PMC10885142 DOI: 10.1021/jacs.3c14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Reaction of the ruthenium carbene complex Cp*(IPr)RuCl (1) (IPr = 1,3-bis(Dipp)imidazol-2-ylidene; Dipp = 2,6-diisopropylphenyl) with sodium phosphaethynolate (NaOCP) led to intramolecular dearomatization of one of the Dipp substituents on the Ru-bound carbene to afford a Ru-bound phosphanorcaradiene, 2. Computations by DFT reveal a transition state characterized by a concerted process whereby CO migrates to the Ru center as the P atom adds to the π system of the aryl group. The phosphanorcaradiene possesses ambiphilic properties and reacts with both nucleophilic and electrophilic substrates, resulting in rearomatization of the ligand aryl group with net P atom transfer to give several unusual metal-bound, P-containing main-group moieties. These new complexes include a metallo-1-phospha-3-azaallene (Ru─P═C═NR), a metalloiminophosphanide (Ru─P═N─R), and a metallophosphaformazan (Ru─P(═N─N═CPh2)2). Reaction of 2 with the carbene 2,3,4,5-tetramethylimidazol-2-ylidene (IMe4) produced the corresponding phosphaalkene DippP═IMe4.
Collapse
Affiliation(s)
- Tyler G Saint-Denis
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - T Alexander Wheeler
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Qingchuan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Gábor Balázs
- Department of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Manfred Scheer
- Department of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| |
Collapse
|
7
|
Lu B, Zeng X. Phosphinidenes: Fundamental Properties and Reactivity. Chemistry 2023:e202303283. [PMID: 38108540 DOI: 10.1002/chem.202303283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Phosphinidenes are heavy congeners of nitrenes that have been broadly used as in situ reagents in synthetic phosphorus chemistry and also serve as versatile ligands in coordination with transition metals. However, the detection of free phosphinidenes is largely challenged by their high reactivity and also the lack of suitable synthetic methods, rendering the knowledge about the fundamental properties of this class of low-valent phosphorus compounds limited. Recently, an increasing number of free phosphinidenes bearing prototype structural and bonding properties have been prepared for the first time, thus enabling the exploration of their distinct reactivity from the nitrene analogues. This Concept article will discuss the experimental approaches for the generation of the highly unstable phosphinidenes and highlight their distinct reactivity from the nitrogen analogues so as to stimuate future studies about their potential applications in phosphorus chemistry.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
8
|
Li C, Hinz A. Photolysis of Phosphaketenyltetrylenes with a Carbazolyl Substituent. Chem Asian J 2023; 18:e202300698. [PMID: 37702378 DOI: 10.1002/asia.202300698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Phosphaketenes of divalent group 14 compounds can potentially serve as precursors for the synthesis of heavy multiple-bond systems. We have employed the dtbp Cbz substituent (dtbp Cbz=1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazolyl) to prepare such phosphaketenyltetrylenes [(dtbp Cbz)EPCO] (E=Ge, Sn, Pb). While the phosphaketenyltetrylenes are stable at ambient conditions, they can be readily decarbonylated photolytically. For the germylene and stannylene derivatives, dimeric diphosphene-type products [(dtbp Cbz)EP]2 (E=Ge, Sn) were obtained. In contrast, photolysis of the phosphaketenylplumbylene, via isomerisation of the [(dtbp Cbz)PbP] intermediate to [(dtbp Cbz)PPb], afforded an unsymmetric and incompletely decarbonylated product [(dtbp Cbz)2 Pb2 P2 CO] formally comprising a [(dtbp Cbz)PPb] and a [(dtbp Cbz)PbPCO] moiety.
Collapse
Affiliation(s)
- Chenxin Li
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
9
|
Sabater E, Solà M, Salvador P, Andrada DM. Cage-size effects on the encapsulation of P 2 by fullerenes. J Comput Chem 2023; 44:268-277. [PMID: 35546081 DOI: 10.1002/jcc.26884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 01/03/2023]
Abstract
The classic pnictogen dichotomy stands for the great contrast between triply bonding very stable N2 molecules and its heavier congeners, which appear as dimers or oligomers. A banner example involves phosphorus as it occurs in nature as P4 instead of P2 , given its weak π-bonds or strong σ-bonds. The P2 synthetic value has brought Lewis bases and metal coordination stabilization strategies. Herein, we discuss the unrealized encapsulation alternative using the well-known fullerenes' capability to form endohedral and stabilize otherwise unstable molecules. We chose the most stable fullerene structures from Cn (n = 50, 60, 70, 80) and experimentally relevant from Cn (n = 90 and 100) to computationally study the thermodynamics and the geometrical consequences of encapsulating P2 inside the fullerene cages. Given the size differences between P2 and P4 , we show that the fullerenes C70 -C100 are suitable cages to side exclude P4 and host only one molecule of P2 with an intact triple bond. The thermodynamic analysis indicates that the process is favorable, overcoming the dimerization energy. Additionally, we have evaluated the host-guest interaction to explain the origins of their stability using energy decomposition analysis.
Collapse
Affiliation(s)
- Enric Sabater
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany.,Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona
| | - Diego M Andrada
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
10
|
|
11
|
Feld J, Goicoechea JM. Metal‐mediated decarbonylation of phosphanyl‐phosphaketenes to afford phosphanyl‐phosphinidine complexes. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jose Manuel Goicoechea
- University of Oxford Department of Chemistry CRL, Mansfield Road OX1 3TA Oxford UNITED KINGDOM
| |
Collapse
|
12
|
Sharma MK, Dhawan P, Helling C, Wölper C, Schulz S. Bis-Phosphaketenes LM(PCO) 2 (M=Ga, In): A New Class of Reactive Group 13 Metal-Phosphorus Compounds. Chemistry 2022; 28:e202200444. [PMID: 35226777 PMCID: PMC9314960 DOI: 10.1002/chem.202200444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Phosphaketenes are versatile reagents in organophosphorus chemistry. We herein report on the synthesis of novel bis-phosphaketenes, LM(PCO)2 (M=Ga 2 a, In 2 b; L=HC[C(Me)N(Ar)]2 ; Ar=2,6-i-Pr2 C6 H3 ) by salt metathesis reactions and their reactions with LGa to metallaphosphenes LGa(OCP)PML (M=Ga 3 a, In 3 b). 3 b represents the first compound with significant In-P π-bonding contribution as was confirmed by DFT calculations. Compounds 3 a and 3 b selectively activate the N-H and O-H bonds of aniline and phenol at the Ga-P bond and both reactions proceed with a rearrangement of the phosphaethynolate group from Ga-OCP to M-PCO bonding. Compounds 2-5 are fully characterized by heteronuclear (1 H, 13 C{1 H}, 31 P{1 H}) NMR and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Pratima Dhawan
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Christoph Helling
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745141EssenGermany
- Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| |
Collapse
|
13
|
Helling C, Haak J, Wölper C, Cutsail GE, Schulz S. Sequential Reduction of Borylstibane to an Electronically Nonsymmetric Diboryldistibene Radical Anion. Inorg Chem 2022; 61:5124-5132. [PMID: 35293742 DOI: 10.1021/acs.inorgchem.2c00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the formation of metal-metal bonds and their electronic structures is still a scientific task. We herein report on the stepwise synthesis of boryl-substituted antimony compounds in which the antimony atoms adopt four different oxidation states (+III, +II, +I, +I/0). Sb-C bond homolysis of Cp*[(HCNDip)2B]SbCl (1; Cp* = C5Me5; Dip = 2,6-iPr2C6H3) gave diboryldichlorodistibane [(HCNDip)2BSbCl]2 (2), which reacted with KC8 to form diboryldistibene [(HCNDip)2BSb]2 (3) and traces of cyclotetrastibane [(HCNDip)2B]3Sb4Cl (5). One-electron reduction of 3 yielded the potassium salt of the diboryldistibene radical anion [(HCNDip)2BSb]2̇-, [K(18-c-6)(OEt2)][{(HCNDip)2BSb}2] (4), which exhibits an unprecedented inequivalent spin localization on the Sb-Sb bond and hence an unsymmetric electronic structure. Compounds 1-4 were characterized by heteronuclear nuclear magnetic resonance (NMR) (1H, 13C, 11B), infrared (IR), ultraviolet-visible (UV-vis) spectroscopy (3, 4), and single crystal X-ray diffraction (sc-XRD, 1-5), while the bonding nature of 3 and 4 was analyzed by quantum chemical calculations. EPR spectroscopy resolves the dissimilar Sb hyperfine tensors of 4, reflecting the inequivalent spin distribution, setting 4 uniquely apart from all previously characterized dipnictene radical anions.
Collapse
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Julia Haak
- Max Planck Institute for Chemical Energy Conversion (CEC), 45470 Mülheim an der Ruhr, Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - George E Cutsail
- Institute for Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.,Max Planck Institute for Chemical Energy Conversion (CEC), 45470 Mülheim an der Ruhr, Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.,Center for Nanointegration Duisburg Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
14
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
15
|
Schoening J, Ganesamoorthy C, Wölper C, Solel E, Schreiner PR, Schulz S. Synthesis, electronic nature, and reactivity of selected silylene carbonyl complexes. Dalton Trans 2022; 51:8249-8257. [DOI: 10.1039/d2dt01335e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room-temperature stable main group element carbonyl complexes are rare. Here we report on the synthesis of two such complexes, namely gallium-substituted silylene-carbonyl complexes [L(X)Ga]2SiCO (X = I 2, Me 3;...
Collapse
|
16
|
Duvinage D, Janssen M, Lork E, Grützmacher H, Mebs S, Beckmann J. Heavier Bis(m-terphenyl)element phosphaethynolates of Group 13. Dalton Trans 2022; 51:7622-7629. [DOI: 10.1039/d2dt00907b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and reactivity of the heavier group 13 phosphaketene complexes (2,6-Mes2C6H3)2EPCO (1, E = Ga; 2, E = In) were reported. The reaction of 1 and 2 with 1,2,3,4-tetramethylimidazolin-2-ylidene,...
Collapse
|
17
|
Ergöçmen D, Goicoechea JM. Synthesis, Structure and Reactivity of a Cyapho-Cyanamide Salt. Angew Chem Int Ed Engl 2021; 60:25286-25289. [PMID: 34554622 DOI: 10.1002/anie.202111619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Indexed: 11/05/2022]
Abstract
We describe a facile synthesis of the cyapho-cyanamide salt [Na(18-crown-6)][N(CN)(CP)] from reaction of [Na(18-crown-6)][PH2 ] (18-crown-6=1,4,7,10,13,16-hexaoxacyclooctadecane) with dimethyl N-cyanocarbonimidate, (MeO)2 C=N(CN). The reaction proceeds with elimination of two equivalents of methanol. Careful tuning of the reaction conditions allowed for the isolation and characterization of the N-cyano(carboximidate)phosphide intermediate [HP{C(OMe)N(CN)}]- . Due to the adverse effects of methanol in these reaction mixtures, a bulk scale synthesis of [Na(18-crown-6)][N(CN)(CP)] could be achieved by addition of a base (LiHMDS) to neutralize the resulting alcohol. Further reactivity studies of this anion reveal that functionalization at the phosphorus atom is viable to yield a new family of cyanide-functionalised phosphorus heterocycles.
Collapse
Affiliation(s)
- Doruk Ergöçmen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
18
|
Ergöçmen D, Goicoechea JM. Synthesis, Structure and Reactivity of a Cyapho‐Cyanamide Salt. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Doruk Ergöçmen
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA U.K
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA U.K
| |
Collapse
|
19
|
Le Corre G, Gamboa‐Carballo JJ, Li Z, Grützmacher H. Cyano(triphenylsilyl)phosphanide as a Building Block for P,C,N Conjugated Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Grégoire Le Corre
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Juan José Gamboa‐Carballo
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC) University of Havana Ave. S Allende 1110 10600 Havana Cuba
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| |
Collapse
|
20
|
Le Corre G, Gamboa‐Carballo JJ, Li Z, Grützmacher H. Cyano(triphenylsilyl)phosphanide as a Building Block for P,C,N Conjugated Molecules. Angew Chem Int Ed Engl 2021; 60:24817-24822. [PMID: 34463413 PMCID: PMC9297940 DOI: 10.1002/anie.202108295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Indexed: 11/29/2022]
Abstract
The cyano(triphenylsilyl)phosphanide anion was prepared as a sodium salt from 2-phosphaethynolate. The electronic structure of this new cyano(silyl)phosphanide was studied via computational methods and its reactivity investigated using various electrophiles and Lewis acids, demonstrating its P- and N-nucleophilicity. The ambident reactivity is in agreement with computations. The silyl group also shows lability and therefore the cyano(silyl)phosphanide can be considered as a phosphacyanamide synthon, [PCN]2- , and serves as building block for the transfer of a PCN moiety.
Collapse
Affiliation(s)
- Grégoire Le Corre
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
| | - Juan José Gamboa‐Carballo
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC)University of HavanaAve. S Allende 111010600HavanaCuba
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen UniversityGuangzhou510275China
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
| |
Collapse
|
21
|
Qian W, Lu B, Tan G, Rauhut G, Grützmacher H, Zeng X. Vibrational spectrum and photochemistry of phosphaketene HPCO. Phys Chem Chem Phys 2021; 23:19237-19243. [PMID: 34524290 DOI: 10.1039/d1cp02860j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational spectra of the simplest phosphaketene HPCO and its isotopologue DPCO in solid Ar-matrices at 12.0 K have been analyzed with the aid of the computations at the CCSD(T)-F12a/cc-pVTZ-F12 level using configuration-selective vibrational configuration interaction (VCI). In addition to the four IR fundamentals, four overtone and ten combination bands have been unambiguously identified. Furthermore, the photochemistry of HPCO in the matrix has been investigated for the first time. Upon UV-light irradiation (365 or 266 nm), CO-elimination occurs by forming the parent phosphinidene HP that can be trapped by ˙NO to yield the elusive phosphinimine-N-oxyl radical HPNO˙. In contrast, an excimer laser (193 nm) irradiation of HPCO causes additional decomposition to H˙ and ˙PCO with concomitant formation of the long-sought phosphaethyne HOCP.
Collapse
Affiliation(s)
- Weiyu Qian
- Department of Chemistry, Fudan University, 200433 Shanghai, China.
| | - Bo Lu
- Department of Chemistry, Fudan University, 200433 Shanghai, China.
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | | | - Xiaoqing Zeng
- Department of Chemistry, Fudan University, 200433 Shanghai, China.
| |
Collapse
|
22
|
Obi AD, Machost HR, Dickie DA, Gilliard RJ. A Thermally Stable Magnesium Phosphaethynolate Grignard Complex. Inorg Chem 2021; 60:12481-12488. [PMID: 34346670 DOI: 10.1021/acs.inorgchem.1c01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 2-phosphaethynolate (OCP) anion has found versatile applications across the periodic table but remains underexplored in group 2 chemistry due to challenges in isolating thermally stable complexes. By rationally modifying their coordination environments using 1,3-dialkyl-substituted N-heterocyclic carbenes (NHCs), we have now isolated and characterized thermally stable, structurally diverse, and hydrocarbon soluble magnesium phosphaethynolate complexes (2, 4Me, and 8-10), including the novel phosphaethynolate Grignard reagent (2iPr). The methylmagnesium phosphaethynolate and magnesium diphosphaethynolate complexes readily activate dioxane with subsequent H-atom abstraction to form [(NHC)MgX(μ-OEt)]2 [X = Me (3) or OCP (8 and 9)] complexes. Their reactivities increased with the Lewis acidity of the Mg2+ cation and may be attenuated by Lewis base saturation or a slight increase in carbene sterics. Solvent effects were also investigated and led to the surreptitious isolation of an ether-free sodium phosphaethynolate (NHC)3Na(OCP) (6), which is soluble in aromatic hydrocarbons and can be independently prepared by the reaction of NHC and [Na(dioxane)2][OCP] in toluene. Under forcing conditions (105 °C, 3 days), the magnesium diphosphaethynolate complex (NHC)3Mg(OCP)2 (10) decomposes to a mixture of organophosphorus complexes, among which a thermal decarbonylation product [(NHC)2PI][OCP] (11) was isolated.
Collapse
Affiliation(s)
- Akachukwu D Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Haleigh R Machost
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
23
|
Reinholdt A, Jafari MG, Sandoval-Pauker C, Ballestero-Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π-Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021; 60:17595-17600. [PMID: 34192399 DOI: 10.1002/anie.202104688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiII complex [(TptBu,Me )TiCl], yielded the [(TptBu,Me )Ti(η3 -ECNAd)] species (Ad=1-adamantyl, TptBu,Me- =hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3 )3 ; moreover, its bent geometry hints to a reduced Ad-NCP3- resonance contributor. The analogous and rarer mono-substituted cyanoarsenide ligand, Ad-NCAs3- , shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII , VII fails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me )V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π-backbonding interactions with the former TiII ion, and their assembly to most likely involve a concerted E atom transfer between Ti-bound OCE- to AdNC ligands when studying the reaction coordinate for E=P.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Ernesto Ballestero-Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Reinholdt A, Jafari MG, Sandoval‐Pauker C, Ballestero‐Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π‐Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Mehrafshan G. Jafari
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Ernesto Ballestero‐Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Michael R. Gau
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Balazs Pinter
- Department of Chemistry Universidad Técnica Federico Santa María Valparaíso 2390123 Chile
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
25
|
Sun J, Verplancke H, Schweizer JI, Diefenbach M, Würtele C, Otte M, Tkach I, Herwig C, Limberg C, Demeshko S, Holthausen MC, Schneider S. Stabilizing P≡P: P22–, P2⋅–, and P20 as bridging ligands. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Yu J, Liu K, Wu Q, Li B, Kong X, Hu K, Mei L, Yuan L, Chai Z, Shi W. Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bin Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Institute of Industrial Technology Chinese Academy of Sciences, Ningbo Zhejiang 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Hagspiel S, Fantuzzi F, Dewhurst RD, Gärtner A, Lindl F, Lamprecht A, Braunschweig H. Adducts of the Parent Boraphosphaketene H 2 BPCO and their Decarbonylative Insertion Chemistry. Angew Chem Int Ed Engl 2021; 60:13666-13670. [PMID: 33843132 PMCID: PMC8252595 DOI: 10.1002/anie.202103521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Indexed: 01/06/2023]
Abstract
The first examples of Lewis base adducts of the parent boraphosphaketene (H2 B-PCO) and their cyclodimers are prepared. One of these adducts is shown to undergo mild decarbonylation and phosphinidene insertion into a B-C bond of a borole, forming very rare examples of 1,2-phosphaborinines, B/P isosteres of benzene. The strong donor properties of these 1,2-phosphaborinines are confirmed by the synthesis of their π complexes with the Group 6 metals.
Collapse
Affiliation(s)
- Stephan Hagspiel
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Annalena Gärtner
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felix Lindl
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Anna Lamprecht
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
28
|
Hagspiel S, Fantuzzi F, Dewhurst RD, Gärtner A, Lindl F, Lamprecht A, Braunschweig H. Addukte des Stammboraphosphaketens H
2
BPCO und deren Insertionsreaktionen mittels Decarbonylierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Hagspiel
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Deutschland
| | - Rian D. Dewhurst
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Annalena Gärtner
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Felix Lindl
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Anna Lamprecht
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
29
|
Watt FA, Burkhardt L, Schoch R, Mitzinger S, Bauer M, Weigend F, Goicoechea JM, Tambornino F, Hohloch S. η
3
‐Coordination and Functionalization of the 2‐Phosphaethynthiolate Anion at Lanthanum(III)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fabian A. Watt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Stefan Mitzinger
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Florian Weigend
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Frank Tambornino
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 6020 Innsbruck Austria
| |
Collapse
|
30
|
Watt FA, Burkhardt L, Schoch R, Mitzinger S, Bauer M, Weigend F, Goicoechea JM, Tambornino F, Hohloch S. η 3 -Coordination and Functionalization of the 2-Phosphaethynthiolate Anion at Lanthanum(III)*. Angew Chem Int Ed Engl 2021; 60:9534-9539. [PMID: 33565689 PMCID: PMC8252525 DOI: 10.1002/anie.202100559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 01/08/2023]
Abstract
We present the η3 -coordination of the 2-phosphaethynthiolate anion in the complex (PN)2 La(SCP) (2) [PN=N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide)]. Structural comparison with dinuclear thiocyanate-bridged (PN)2 La(μ-1,3-SCN)2 La(PN)2 (3) and azide-bridged (PN)2 La(μ-1,3-N3 )2 La(PN)2 (4) complexes indicates that the [SCP]- coordination mode is mainly governed by electronic, rather than steric factors. Quantum mechanical investigations reveal large contributions of the antibonding π*-orbital of the [SCP]- ligand to the LUMO of complex 2, rendering it the ideal precursor for the first functionalization of the [SCP]- anion. Complex 2 was therefore reacted with CAACs which induced a selective rearrangement of the [SCP]- ligand to form the first CAAC stabilized group 15-group 16 fulminate-type complexes (PN)2 La{SPC(R CAAC)} (5 a,b, R=Ad, Me). A detailed reaction mechanism for the SCP-to-SPC isomerization is proposed based on DFT calculations.
Collapse
Affiliation(s)
- Fabian A. Watt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Stefan Mitzinger
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Florian Weigend
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Frank Tambornino
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
31
|
Walley JE, Warring LS, Kertész E, Wang G, Dickie DA, Benkő Z, Gilliard RJ. Indirect Access to Carbene Adducts of Bismuth- and Antimony-Substituted Phosphaketene and Their Unusual Thermal Transformation to Dipnictines and [(NHC) 2OCP][OCP]. Inorg Chem 2021; 60:4733-4743. [PMID: 33689349 PMCID: PMC8277130 DOI: 10.1021/acs.inorgchem.0c03683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
The
synthesis and thermal redox chemistry of the first antimony
(Sb)– and bismuth (Bi)–phosphaketene adducts are described.
When diphenylpnictogen chloride [Ph2PnCl (Pn = Sb or Bi)]
is reacted with sodium 2-phosphaethynolate [Na[OCP]·(dioxane)x], tetraphenyldipnictogen (Ph2Pn–PnPh2) compounds are produced, and an insoluble
precipitate forms from solution. In contrast, when the N-heterocyclic carbene adduct (NHC)–PnPh2Cl is combined
with [Na[OCP]·(dioxane)x], Sb–
and Bi–phosphaketene complexes are isolated. Thus, NHC serves
as an essential mediator for the reaction. Immediately after the formation
of an intermediary pnictogen–phosphaketene NHC adduct [NHC–PnPh2(PCO)], the NHC ligand transfers from the Pn center to the
phosphaketene carbon atom, forming NHC–C(O)P-PnPh2 [Pn = Sb (3) or Bi (4)]. In the solid
state, 3 and 4 are dimeric with short intermolecular
Pn–Pn interactions. When compounds 3 and 4 are heated in THF at 90 and 70 °C, respectively, the
pnictogen center PnIII is thermally reduced to PnII to form tetraphenyldipnictines (Ph2Pn–PnPh2) and an unusual bis-carbene-supported OCP
salt, [(NHC)2OCP][OCP] (5). The formation
of compound 5 and Ph2Pn–PnPh2 from 3 or 4 is unique in comparison to
the known thermal reactivity for group 14 carbene–phosphaketene
complexes, further highlighting the diverse reactivity of [OCP]− with main-group elements. All new compounds have been
fully characterized by single-crystal X-ray diffraction, multinuclear
NMR spectroscopy (1H, 13C, and 31P), infrared spectroscopy, and elemental analysis (1, 2, and 5). The electronic structure of 5 and the mechanism of formation were investigated using density
functional theory (DFT). An N-heterocyclic carbene (NHC) was used
to support the otherwise unstable Ph2Sb—P=C=O
and Ph2Bi—P=C=O moieties. Exploration
of the thermal chemistry of these NHC−phosphaketene adducts
reveals the formation of the salt [NHC2OCP][OCP]. This
present work demonstrates the thermal chemistry of the 2-phospaethynolate
anion with heavier pnictogens (Sb and Bi).
Collapse
Affiliation(s)
- Jacob E Walley
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Levi S Warring
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Erik Kertész
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Guocang Wang
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| |
Collapse
|
32
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Vielseitiges Gallaphosphen: Von einem Ga‐P‐Ga‐Heteroallylkation über CO
2
‐Speicherung hin zu C(sp
3
)‐H‐Bindungsaktivierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahendra K. Sharma
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Christoph Wölper
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Gebhard Haberhauer
- Institut für Organische Chemie Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Stephan Schulz
- Institut für Anorganische Chemie und Center für Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| |
Collapse
|
33
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Multi-Talented Gallaphosphene for Ga-P-Ga Heteroallyl Cation Generation, CO 2 Storage, and C(sp 3 )-H Bond Activation. Angew Chem Int Ed Engl 2021; 60:6784-6790. [PMID: 33368922 PMCID: PMC7986129 DOI: 10.1002/anie.202014381] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/12/2022]
Abstract
Gallaphosphene L(Cl)GaPGaL (2; L=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ), which is synthesized by reaction of LGa(Cl)PCO (1) with LGa, reacts with [Na(OCP)(dioxane)2.5 ] to LGa(OCP)PGaL (3), whereas chloride abstraction with LiBArF 4 yields [LGaPGaL][BArF 4 ] (4; BArF 4 =B(C6 F5 )4 ). 4 represents a heteronuclear analog of the allyl cation according to quantum chemical calculations. Remarkably, 2 reversibly reacts with CO2 to yield L(Cl)Ga-P[μ-C(O)O]2 GaL (5), while reactions with acetophenone and acetone selectively give compounds 6 and 7 by C(sp3 )-H bond activation.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Gebhard Haberhauer
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| |
Collapse
|
34
|
|
35
|
Wilson DWN, Feld J, Goicoechea JM. A Phosphanyl-Phosphagallene that Functions as a Frustrated Lewis Pair. Angew Chem Int Ed Engl 2020; 59:20914-20918. [PMID: 32615007 PMCID: PMC7693089 DOI: 10.1002/anie.202008207] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/05/2022]
Abstract
Phosphagallenes (1 a/1 b) featuring double bonds between phosphorus and gallium were synthesized by reaction of (phosphanyl)phosphaketenes with the gallium carbenoid Ga(Nacnac) (Nacnac=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ). The stability of these species is dependent on the saturation of the phosphanyl moiety. 1 a, which bears an unsaturated phosphanyl ring, rearranges in solution to yield a spirocyclic compound (2) which contains a P=P bond. The saturated variant 1 b is stable even at elevated temperatures. 1 b behaves as a frustrated Lewis pair capable of activation of H2 and forms a 1:1 adduct with CO2 .
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Joey Feld
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
36
|
Wilson DWN, Feld J, Goicoechea JM. A Phosphanyl‐Phosphagallene that Functions as a Frustrated Lewis Pair. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Joey Feld
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
37
|
Wilson DWN, Myers WK, Goicoechea JM. Synthesis and decarbonylation chemistry of gallium phosphaketenes. Dalton Trans 2020; 49:15249-15255. [PMID: 33084675 DOI: 10.1039/d0dt03174g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of gallium phosphaketenyl complexes supported by a 1,2-bis(aryl-imino)acenaphthene ligand (Dipp-Bian) are reported. Photolysis of one such species induced decarbonylation to afford a gallium substituted diphosphene. Addition of Lewis bases, specifically trimethylphosphine and the gallium carbenoid Ga(Nacnac) (Nacnac = HC[C(Me)N-(C6H3)-2,6-iPr2]2), resulted in displacement of the phosphaketene carbonyl to yield base-stabilised phosphinidenes. In several of these transformations, the redox non-innocence of the Dipp-Bian ligand was found to give rise to radical intermediates and/or side-products.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - William K Myers
- Department of Chemistry, University of Oxford, Centre for Advanced ESR, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
38
|
Wilson DWN, Mehta M, Franco MP, McGrady JE, Goicoechea JM. Linkage Isomerism Leading to Contrasting Carboboration Chemistry: Access to Three Constitutional Isomers of a Borylated Phosphaalkene. Chemistry 2020; 26:13462-13467. [PMID: 32495945 PMCID: PMC7702093 DOI: 10.1002/chem.202002226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/03/2022]
Abstract
We describe the reactivity of two linkage isomers of a boryl-phosphaethynolate, [B]OCP and [B]PCO (where [B]=N,N'-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), towards tris- (pentafluorophenyl)borane (BCF). These reactions afforded three constitutional isomers all of which contain a phosphaalkene core. [B]OCP reacts with BCF through a 1,2 carboboration reaction to afford a novel phosphaalkene, E-[B]O{(C6 F5 )2 B}C=P(C6 F5 ), which subsequently undergoes a rearrangement process involving migration of both the boryloxy and pentafluorophenyl substituents to afford Z-{(C6 F5 )2 B}(C6 F5 )C=PO[B]. By contrast, [B]PCO undergoes a 1,3-carboboration process accompanied by migration of the N,N'-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl to the carbon centre.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Meera Mehta
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mauricio P. Franco
- Instituto de QuímicaUniversity of São PauloAv. Prof. Lineu Prestes, 748—Vila UniversitariaSão Paulo—SP05508-000Brazil
| | - John E. McGrady
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
39
|
Bestgen S, Mehta M, Johnstone TC, Roesky PW, Goicoechea JM. A "Push-Pull" Stabilized Phosphinidene Supported by a Phosphine-Functionalized β-Diketiminato Ligand. Chemistry 2020; 26:9024-9031. [PMID: 32511823 PMCID: PMC7496897 DOI: 10.1002/chem.202001762] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The use of a bis(diphenyl)phosphine functionalized β-diketiminato ligand, [HC{(CH3 )C}2 {(ortho-[P(C6 H5 )2 ]2 C6 H4 )N}2 ]- (PNac), as a support for germanium(II) and tin(II) chloride and phosphaketene compounds, is described. The conformational flexibility and hemilability of this unique ligand provide a versatile coordination environment that can accommodate the electronic needs of the ligated elements. For example, chloride abstraction from [(PNac)ECl] (E=Ge, Sn) affords the cationic germyliumylidene and stannyliumylidene species [(PNac)E]+ in which the pendant phosphine arms associate more strongly with the Lewis acidic main group element centers, providing further electronic stabilization. In a similar fashion, chemical decarbonylation of the germanium phosphaketene [(PNac)Ge(PCO)] with tris(pentafluorophenyl)borane affords a "push-pull" stabilized phosphinidene in which one of the phosphine groups of the ligand backbone associates with the low valent phosphinidene center.
Collapse
Affiliation(s)
- Sebastian Bestgen
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Meera Mehta
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Timothy C. Johnstone
- Department of Chemistry and BiochemistryUniversity of California Santa Cruz1156 High St., PSB 248Santa Cruz CA95064-1077USA
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
40
|
Suter R, Wagner M, Querci L, Conti R, Benkő Z, Grützmacher H. 1,3,4-Azadiphospholides as building blocks for scorpionate and bidentate ligands in multinuclear complexes. Dalton Trans 2020; 49:8201-8208. [PMID: 32501468 DOI: 10.1039/d0dt01864c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulated oxy-substituted 1,3,4-azadiphospholides such as the anion in Na[1] are readily accessible phosphorus heterocycles made from the phosphaethynolate anion (OCP)- and 2-chloropyridines. The sodium salt Na[1] reacts with oxophilic element halides such as OPCl3, PhSiCl3, PhBCl2 and CpTiCl3 at room temperature to form exclusively the oxygen bound tris-substituted compounds E(1)3 (with E = OP, PhSi, PhB- or CpTi). Six equivalents of Na[1] with group four metal chlorides MCl4 (M = Ti, Zr, Hf) form cleanly the hexa-substituted dianions (Na2[M(1)6]) which are isolated in excellent yields. The titanium complexes are deeply coloured species due to ligand to metal charge transfer (LMCT) excitations. In all complexes, the phosphorus atoms of the azadiphosphole moieties are able to coordinate to a soft metal center as shown in their reactions with [Mo(CO)3Mes], yielding complexes in which the Mo(CO)3 binds in a fac manner. Functionalization of the oxy group with amino phosphanes allows isolation of tridentate ligands, which have been used as synthons for macrocyclic molybdenum carbonyl complexes.
Collapse
Affiliation(s)
- Riccardo Suter
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
41
|
Misochko EY, Akimov AV, Korchagin DV, Ganushevich YS, Melnikov EA, Miluykov VA. Generation and direct EPR spectroscopic observation of triplet arylphosphinidenes: stabilisation versus internal rearrangements. Phys Chem Chem Phys 2020; 22:27626-27631. [DOI: 10.1039/d0cp05254j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphinidene – to be or not to be: only the arylphosphinidenes with relatively small ortho-substituents are kinetically stable. EPR spectra of such stabilized intermediates have been detected for the first time.
Collapse
Affiliation(s)
| | | | | | - Yulia S. Ganushevich
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Kazan
- Russia
| | - Egor A. Melnikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Kazan
- Russia
| | - Vasili A. Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Kazan
- Russia
| |
Collapse
|