1
|
Lee JH, Fujii S, Takahashi R, Sakurai K. Monodisperse Micelles with Aggregation Numbers Related to Platonic Solids. Macromol Rapid Commun 2020; 41:e2000227. [DOI: 10.1002/marc.202000227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Ji Ha Lee
- Dr. J. H. Lee Chemical Engineering Program Graduate School of Advanced Science and Engineering Hiroshima University 1‐4‐1 Kagamiyama, Higashi‐Hiroshima Hiroshima 739‐8527 Japan
| | - Shota Fujii
- Dr. S. Fujii, Dr. R. Takahashi, Prof. K. Sakurai Department of Chemistry and Biochemistry University of Kitakyushu 1‐1 Hibikino Kitakyushu Fukuoka 808‐0135 Japan
| | - Rintaro Takahashi
- Dr. S. Fujii, Dr. R. Takahashi, Prof. K. Sakurai Department of Chemistry and Biochemistry University of Kitakyushu 1‐1 Hibikino Kitakyushu Fukuoka 808‐0135 Japan
| | - Kazuo Sakurai
- Dr. S. Fujii, Dr. R. Takahashi, Prof. K. Sakurai Department of Chemistry and Biochemistry University of Kitakyushu 1‐1 Hibikino Kitakyushu Fukuoka 808‐0135 Japan
| |
Collapse
|
2
|
Pashirova TN, Sapunova AS, Lukashenko SS, Burilova EA, Lubina AP, Shaihutdinova ZM, Gerasimova TP, Kovalenko VI, Voloshina AD, Souto EB, Zakharova LY. Synthesis, structure-activity relationship and biological evaluation of tetracationic gemini Dabco-surfactants for transdermal liposomal formulations. Int J Pharm 2019; 575:118953. [PMID: 31843548 DOI: 10.1016/j.ijpharm.2019.118953] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/15/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023]
Abstract
In this study, we report the relationship between structure, self-assembly behavior and antimicrobial activity of multicationic gemini surfactants and their successful use as stabilizers of a new liposomal formulation for transdermal drug delivery. New surfactants containing natural moiety 1,4-diazabicyclo[2.2.2]octane with four charges and two hydrophobic chains (n-Dabco-s-Dabco-n, where s = 2, 6, 12 and n = 12, 14, 16, 18) were synthesized. A linear dependence of the CMC decrease, with the increase of the number of carbon atoms in alkyl groups (slope 0.23) was shown. The aggregation numbers of n-Dabco-2-Dabco-n are smaller than 30 and they decrease with increasing alkyl chain length. This is in compliance with the larger surface area per n-Dabco-2-Dabco-n molecule. New liposomal formulations loading Rhodamine B phosphatidylcholine (with mean size about 100 nm and increased zeta potential from -7 ± 2 mV to +55 ± 2 mV) have been successfully stabilized by n-Dabco-s-Dabco-n surfactants. These formulations were designed to improve the bioavailability and skin permeation of loaded compound. The antibacterial activity of Dabco-surfactants was shown to be strongly affected by their structure (alkyl chain length and number of charged nitrogen). 12-Dabco-2-Dabco-12 was the most active (MIC = 0.48, 0.98 and 15.6 µg/mL against S. aureus, B. cereus and E. coli, respectively) without hemolytic activity at 3.1 µg/mL concentration. PC/14-Dabco-2-Dabco-14-liposomes were shown to be the best formulation, with the highest antibacterial activity against Sa (MIC = 7.8 μg‧mL-1) and lowest cytotoxicity (IC50 > 125). The modification of liposomes by Dabco-surfactants stabilizes the membrane of the vesicles, preventing the release of rhodamine B and impairing the penetration of the dye across Strat-M® membrane. Cellular uptake of rhodamine B-loaded PC/12-Dabco-2-Dabco-12-liposomes was also reported. This is the first example of cationic mixed liposomes containing Dabco-surfactants of potential interest for transdermal drug delivery.
Collapse
Affiliation(s)
- T N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia.
| | - A S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| | - S S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| | - E A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| | - A P Lubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| | - Z M Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| | - T P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| | - V I Kovalenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| | - A D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| | - E B Souto
- Department of Pharmaceutical Terchnology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - L Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan 420088, Russia
| |
Collapse
|