1
|
Zheng X, Xu L, Douglas JF, Xia W. Role of additive size in the segmental dynamics and mechanical properties of cross-linked polymers. NANOSCALE 2024; 16:16919-16932. [PMID: 39189325 DOI: 10.1039/d4nr02631d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Thermoset materials often involve the addition of molecular and nanoparticle additives to alter various chemo-physical properties of importance in their ultimate applications. The resulting compositional heterogeneities can lead to either enhancement or degradation of thermoset properties, depending on the additive chemical structure and concentration. We tentatively explore this complex physical phenomenon through the consideration of a model polymeric additive to our coarse-grained (CG) thermoset investigated in previous works by simply varying the size of additive segments compared to those of polymer melt. We find that the additive modified thermoset material becomes chemically heterogeneous from additive aggregation when the additive segments become much smaller than those of the thermoset molecules, and a clear evidence is observed in the spatial distribution of local molecular stiffness estimated from Debye-Waller factor 〈u2〉. Despite the non-monotonic variation trends observed in dynamical and mechanical properties with decreasing additive segmental size, both the structural relaxation time and moduli (i.e., shear modulus and bulk modulus) exhibit scaling laws with 〈u2〉. The present work highlights the complex role of additive size played in the dynamical and mechanical properties of thermoset polymers, which should provide a better understanding for the glass formation process of cross-linked polymer composites.
Collapse
Affiliation(s)
- Xiangrui Zheng
- Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lan Xu
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
2
|
Wang F, Li S, Liang J, Wang Y, Song H, Yang J, Zou X, Li C. Removal and reuse of heavy metal ions on mildly oxidized Ti 3C 2 @BF membrane via synergistic photocatalytic-photothermal approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131954. [PMID: 37392643 DOI: 10.1016/j.jhazmat.2023.131954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
The pollution of heavy metal ions in water seriously affects the ecosystem and human health. Here, an efficient synergetic photocatalytic-photothermal system is designed by combining a mildly oxidized Ti3C2 (mo-Ti3C2) with a super hydrophilic bamboo fiber (BF) membrane. The mo-Ti3C2 heterojunction promotes the transfer and separation of photoinduced charges and thus enhances the photocatalytic reduction of heavy metal ions (Co2+, Pb2+, Zn2+, Mn2+ and Cu2+). The photoreduced metal nanoparticles with high conductivity and LSPR effect further accelerate the transfer and separation of photoinduced charges, and improve photothermal and evaporative performance. The mo-Ti3C2-2.4 @BF membrane in Co(NO3)2 solution can achieve an excellent evaporation rate of 4.6 kg·m-2·h-1 and a high solar-vapor efficiency of up to 97.5% under the light intensity of 2.44 kW·m-2, which are 27.8% and 19.6% higher than those in H2O, respectively, demonstrating the reuse of photoreduced Co nanoparticles. No heavy metal ions are detected in any of the condensed water, and the Co2+ removal rate in the concentrated Co(NO3)2 solution is up to 80.4%. The synergetic photocatalytic-photothermal approach on the mo-Ti3C2 @BF membrane provides a new scope for the continuous removal and reuse of heavy metal ions, as well as for obtaining clean water.
Collapse
Affiliation(s)
- Fangxian Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shihao Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junwen Liang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuwei Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Haoran Song
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junwei Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xuelin Zou
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Changping Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
3
|
Hong Y, Zhu Y, Du Y, Che Z, Qu G, Li Q, Yuan T, Yang W, Dai Z, Han W, Ma Q. Atomistic Construction of Silicon Nitride Ceramic Fiber Molecular Model and Investigation of Its Mechanical Properties Based on Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6082. [PMID: 37763360 PMCID: PMC10532553 DOI: 10.3390/ma16186082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Molecular simulations are currently receiving significant attention for their ability to offer a microscopic perspective that explains macroscopic phenomena. An essential aspect is the accurate characterization of molecular structural parameters and the development of realistic numerical models. This study investigates the surface morphology and elemental distribution of silicon nitride fibers through TEM and EDS, and SEM and EDS analyses. Utilizing a customized molecular dynamics approach, molecular models of amorphous and multi-interface silicon nitride fibers with complex structures were constructed. Tensile simulations were conducted to explore correlations between performance and molecular structural composition. The results demonstrate successful construction of molecular models with amorphous, amorphous-crystalline interface, and mixed crystalline structures. Mechanical property characterization reveal the following findings: (1) The nonuniform and irregular amorphous structure causes stress concentration and crack formation under applied stress. Increased density enhances material strength but leads to higher crack sensitivity. (2) Incorporating a crystalline reinforcement phase without interfacial crosslinking increases free volume and relative tensile strength, improving toughness and reducing crack susceptibility. (3) Crosslinked interfaces effectively enhance load transfer in transitional regions, strengthening the material's tensile strength, while increased density simultaneously reduces crack propagation.
Collapse
Affiliation(s)
- Yiqiang Hong
- Science and Technology on Advanced Ceramic Fibers & Composites Laboratory, College of Aerospace Science, National University of Defense Technology, Changsha 410073, China
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China (W.Y.)
| | - Yu Zhu
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China (W.Y.)
| | - Youpei Du
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China (W.Y.)
| | - Zhe Che
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China (W.Y.)
| | - Guoxin Qu
- The Fourth Academy of CASIC, Beijing 100028, China
| | - Qiaosheng Li
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China (W.Y.)
| | - Tingting Yuan
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China (W.Y.)
| | - Wei Yang
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China (W.Y.)
| | - Zhen Dai
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100871, China (W.Y.)
| | - Weijian Han
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Department of Polymer Chemistry and Physics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingsong Ma
- Science and Technology on Advanced Ceramic Fibers & Composites Laboratory, College of Aerospace Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
4
|
Gao H, Shi R, Zhu Y, Qian H, Lu Z. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Li W, Olvera de la Cruz M. Glass transition of ion-containing polymer melts in bulk and thin films. SOFT MATTER 2021; 17:8420-8433. [PMID: 34542131 DOI: 10.1039/d1sm01098k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion-containing polymers often are good glass formers, and the glass transition temperature is an important parameter to consider for practical applications, which prescribes the working temperature range for different mechanical and dynamic properties. In this work, we present a systematic molecular dynamics simulation study on the coupling of ionic correlations with the glass transition, based on a generic coarse-grained model of ionic polymers. The variation of the glass transition temperature is examined concerning the influence of the electrostatic interaction strength, charge fraction, and charge sequence. The interplay with the film thickness effect is also discussed. Our results reveal a few typical features about the glass transition process that are in qualitative agreement with previous studies, further highlighting the effects of counterion entropy at weak ionic correlations and physical crosslinking of ionic aggregates at strong ionic correlations. Detailed parametric dependencies are displayed, which demonstrate that introducing strong ionic correlations promotes vitrification while adopting a precise charge sequence and applying strong confinement with weak surface affinity reduce the glass transition temperature. Overall, our investigation provides an improved picture towards a comprehensive understanding of the glass transition in ion-containing polymeric systems from a molecular simulation perspective.
Collapse
Affiliation(s)
- Wei Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Jia XM, Lin WF, Zhao HY, Qian HJ, Lu ZY. Supercooled melt structure and dynamics of single-chain nanoparticles: A computer simulation study. J Chem Phys 2021; 155:054901. [PMID: 34364327 DOI: 10.1063/5.0056293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By using coarse-grained molecular dynamics simulations, we have investigated the structure and dynamics of supercooled single-chain cross-linked nanoparticle (SCNP) melts having a range of cross-linking degrees ϕ. We find a nearly linear increase in glass-transition temperature (Tg) with increasing ϕ. Correspondingly, we have also experimentally synthesized a series of polystyrene-based SCNPs and have found that the measured Tg estimated from differential scanning calorimetry is qualitatively consistent with the trend predicted by our simulation estimates. Experimentally, an increase in Tg as large as ΔTg = 61 K for ϕ = 0.36 is found compared with their linear chain counterparts, indicating that the changes in dynamics with cross-links are quite appreciable. We attribute the increase in Tg to the enlarged effective hard-core volume and the corresponding reduction in the free volume of the polymer segments. Topological constraints evidently frustrate the local packing. In addition, the introduction of intra-molecular cross-linking bonds slows down the structural relaxation and simultaneously enhances the local coupling motion on the length scales within SCNPs. Consequently, a more pronounced dynamical heterogeneity (DH) is observed for larger ϕ, as quantified by measuring the dynamical correlation length through the four-point susceptibility parameter, χ4. The increase in DH is directly related to the enhanced local cooperative motion derived from intra-molecular cross-linking bonds and structural heterogeneity derived from the cross-linking process. These results shed new light on the influence of intra-molecular topological constraints on the segmental dynamics of polymer melts.
Collapse
Affiliation(s)
- Xiang-Meng Jia
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Wen-Feng Lin
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Huan-Yu Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Yamamoto S, Kuwahara R, Tanaka K. Dynamic behaviour of water molecules in heterogeneous free space formed in an epoxy resin. SOFT MATTER 2021; 17:6073-6080. [PMID: 34132297 DOI: 10.1039/d1sm00529d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although an epoxy resin is a stable material, it absorbs moisture over a long period of time, causing deterioration of its material properties. We here applied a full-atomistic molecular dynamics (MD) simulation to study where water molecules exist in an epoxy resin and how they dynamically behave. First, the curing reaction was simulated to obtain a network structure so that the time course of the density, and thereby the free space, in the resin were obtained. The results made it possible to discuss the formation and size distribution of the free spaces which were not connected to each other. Then, a few percent of water were inserted into the free space of the cured epoxy resin to examine the location and dynamics of their molecules. We found that several water molecules were clustered at a preferred site, where hydrogen bonds can be formed with hydroxy, ether and amino groups of the network, in the free space, and they heterogeneously moved from there to other sites.
Collapse
Affiliation(s)
- Satoru Yamamoto
- Centre for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan.
| | | | | |
Collapse
|
9
|
Workineh ZG, Pellicane G, Tsige M. Tuning Solvent Quality Induces Morphological Phase Transitions in Miktoarm Star Polymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Giuseppe Pellicane
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, Via Consolare Valeria 1 (Azienda Ospedaliera Universitaria Policlinico “G.Martino”), 98125 Messina, Italy
- CNR-IPCF, Viale F. Stagno d’Alcontres, 37-98158 Messina, Italy
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa
| | - Mesfin Tsige
- Department of Polymer Science, University of Akron, Akron, Ohio United States
| |
Collapse
|
10
|
Li SJ, Qian HJ, Lu ZY. A comparative study on the dynamic heterogeneity of supercooled polymers under nanoconfinement. Phys Chem Chem Phys 2019; 21:15888-15898. [PMID: 31287116 DOI: 10.1039/c9cp02550b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dynamic heterogeneity (DH) is a universal property of glass transition phenomena. In this work, we perform a comparative analysis of DH for pure polymer and polymer/nanoparticle composite systems in both film and bulk states via molecular dynamics simulations. We find that the dynamic gradient and the faster average dynamics due to the presence of a free surface are two leading factors, resulting from a nanoconfinement effect, which influence different parts of DH in a film system. The dynamic gradient results from differences in dynamics at different distances from the mobile surface, which induces a large deviation from the Gaussian distribution for the displacement distribution in the film. At the same time, the maximum string size which describes the region size for cooperative motion (dynamic correlation) can also be influenced by the dynamic gradient, although this influence is much weaker than that on the displacement distribution. On the other hand, reflecting temporal fluctuations of dynamics or temporal parts of DH, characteristic peak times of the non-Gaussian parameter and string size, and the ratio between persistent times and exchange times which describe the dynamic exchange properties, are mainly influenced by the faster dynamics on average. Our results demonstrate that measuring different properties (dynamic distribution, dynamic correlation or dynamic exchange) place an emphasis on distinct temporal and spatial parts of DH. It is necessary to use combinational measurements of these properties to give a complete picture of DH in nanoconfinement environments.
Collapse
Affiliation(s)
- Shu-Jia Li
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|