1
|
AlMahri S, Grega I, Shaikeea AJD, Wadley HNG, Deshpande VS. Underexcitation prevents crystallization of granular assemblies subjected to high-frequency vibration. Proc Natl Acad Sci U S A 2023; 120:e2306209120. [PMID: 37428926 PMCID: PMC10629526 DOI: 10.1073/pnas.2306209120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023] Open
Abstract
Crystallization of dry particle assemblies via imposed vibrations is a scalable route to assemble micro/macro crystals. It is well understood that there exists an optimal frequency to maximize crystallization with broad acceptance that this optimal frequency emerges because high-frequency vibration results in overexcitation of the assembly. Using measurements that include interrupted X-ray computed tomography and high-speed photography combined with discrete-element simulations we show that, rather counterintuitively, high-frequency vibration underexcites the assembly. The large accelerations imposed by high-frequency vibrations create a fluidized boundary layer that prevents momentum transfer into the bulk of the granular assembly. This results in particle underexcitation which inhibits the rearrangements required for crystallization. This clear understanding of the mechanisms has allowed the development of a simple concept to inhibit fluidization which thereby allows crystallization under high-frequency vibrations.
Collapse
Affiliation(s)
- Sara AlMahri
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
- Advanced Materials Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Ivan Grega
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Angkur J. D. Shaikeea
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Haydn N. G. Wadley
- Department of Material Science and Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA22904
| | - Vikram S. Deshpande
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| |
Collapse
|
2
|
Arifuzzaman S, Dong K, Yu A. Process model of vibrating screen based on DEM and physics-informed machine learning. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Amirifar R, Dong K, Yu A. Ordered packing of uniform spheres via random packing protocol. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Arifuzzaman S, Dong K, Zhu H, Zeng Q. DEM study and machine learning model of particle percolation under vibration. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Eristoff S, Kim SY, Sanchez-Botero L, Buckner T, Yirmibeşoğlu OD, Kramer-Bottiglio R. Soft Actuators Made of Discrete Grains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109617. [PMID: 35170820 DOI: 10.1002/adma.202109617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Recent work has demonstrated the potential of actuators consisting of bulk elastomers with phase-changing inclusions for generating high forces and large volumetric expansions. Simultaneously, granular assemblies have been shown to enable tunable properties via different packings, dynamic moduli via jamming, and compatibility with various printing methods via suspension in carrier fluids. Herein, granular actuators are introduced, which represent a new class of soft actuators made of discrete grains. The soft grains consist of a hyperelastic shell and multiple solvent cores. Upon heating, the encapsulated solvent cores undergo liquid-to-gas phase change, inducing rapid and strong volumetric expansion of the hyperelastic shell up to 700%. The grains can be used independently for micro-actuation, or in granular agglomerates for meso- and macroscale actuation, demonstrating the scalability of the granular actuators. Furthermore, the active grains can be suspended in a carrier resin or solvent to enable printable soft actuators via established granular material processing techniques. By combining the advantages of phase-change soft actuation and granularity, this work presents the opportunity to realize soft actuators with tunable bulk properties, compatibility with self-assembly techniques, and on-demand reconfigurability.
Collapse
Affiliation(s)
- Sophia Eristoff
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| | - Sang Yup Kim
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Seoul, 04107, Republic of Korea
| | - Lina Sanchez-Botero
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| | - Trevor Buckner
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| | - Osman Doğan Yirmibeşoğlu
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| | - Rebecca Kramer-Bottiglio
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| |
Collapse
|
6
|
Ding Y, Yang J, Ou Y, Zhao Y, Li J, Hu B, Xia C. Structural evolution of granular cubes packing during shear-induced ordering. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:224003. [PMID: 35263715 DOI: 10.1088/1361-648x/ac5c22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Packings of granular particles may transform into ordered structures under external agitation, which is a special type of out-of-equilibrium self-assembly. Here, evolution of the internal packing structures of granular cubes under cyclic rotating shearing has been analyzed using magnetic resonance imaging techniques. Various order parameters, different types of contacts and clusters composed of face-contacting cubes, as well as the free volume regions in which each cube can move freely have been analyzed systematically to quantify the ordering process and the underlying mechanism of this granular self-assembly. The compaction process is featured by a first rapid formation of orientationally ordered local structures with faceted contacts, followed by further densification driven by free-volume maximization with an almost saturated degree of order. The ordered structures are strongly anisotropic with contacting ordered layers in the vertical direction while remaining liquid-like in the horizontal directions. Therefore, the constraint of mechanical stability for granular packings and the thermodynamic principle of entropy maximization are both effective in this system, which we propose can be reconciled by considering different depths of supercooling associated with various degrees of freedom.
Collapse
Affiliation(s)
- Yunhao Ding
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Jing Yang
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yao Ou
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yu Zhao
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Chengjie Xia
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
7
|
Vibration-induced segregation characteristics of binary pebble beds in confined containers. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Yogi J, Verma SK, Kumar S, Anand A. Experimental Study of Mixing of Nonspherical Particles in a Vibrated Packed Bed Mixer. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeetram Yogi
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sanjay Kumar Verma
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anshu Anand
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
9
|
|
10
|
DEM study of segregation degree and velocity of binary granular mixtures subject to vibration. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.12.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
DEM Study on the Segregation of a Non-Spherical Intruder in a Vibrated Granular Bed. Processes (Basel) 2021. [DOI: 10.3390/pr9030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The segregation process of a single large intruder in a vibrated bed of small particles has been widely studied, but most previous studies focused on spherical intruders. In this work, the discrete element method was used to study the effects of vibration conditions and intruder shape on the dimensionless ascending velocity (va) of the intruder. The intruder was in a prolate shape with aspect ratio varied but its equivalent diameter fixed. Three equivalent diameters, namely volume-equivalent diameter, surface-area-equivalent diameter, and Sauter diameter, were used. It was found that va increases and then decreases with the rise of the dimensionless vibration amplitude (Ad) and the dimensionless vibration frequency (fd), and va increases with the decrease of the sphericity of the intruder (Φ). Moreover, the porosity variation in the vibrated bed and the granular temperature were analyzed, which can be linked to the change of va. It was further found that va can be uniformly correlated to Ad·fd0.5, while the critical change of the response of va to Ad and fd occurs at Γ = 4.83, where Γ is the vibration intensity. Based on these findings, a piecewise equation was proposed to predict va as a function of Ad, fd, and Φ.
Collapse
|
12
|
Amirifar R, Dong K, Zeng Q, An X, Yu A. Effect of vibration mode on self-assembly of granular spheres under three-dimensional vibration. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Madrid MA, Irastorza RM, Meyra AG, Carlevaro CM. Self-assembly of self-propelled magnetic grains. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124906005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we study bidisperse mixtures of self-propelled magnetic particles of different shapes via discrete element method simulations. We show how these particles self-assemble into clusters and how these clusters depend on the ratio of the mixture, the magnetic interaction, and the shape of the grains. It is found that the mix ratio of the system controls the cluster size. Besides, the intensity of the magnetic dipoles and the shape of the grains in the mixture rule the average number of neighbors in contact and the shape of the clusters. By varying the intensity of the interactions, globular, linear and branched clusters were obtained.
Collapse
|
14
|
Lattice-Boltzmann computation of hydraulic pore-to-pore conductance in packed beds of uniform spheres. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|