1
|
Mullen E, Alvarez-Fernandez A, Prochukhan N, Davó-Quiñonero A, Bekarevich R, Gity F, Sheehan B, Baez Vasquez JF, Gatensby R, Bentaleb A, Ward A, Hurley PK, Morris MA. Combined Swelling and Metal Infiltration: Advancing Block Copolymer Pattern Control for Nanopatterning Applications. ACS APPLIED NANO MATERIALS 2025; 8:1829-1842. [PMID: 39911404 PMCID: PMC11791884 DOI: 10.1021/acsanm.4c06197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Block copolymer (BCP) patterning is a well-established self-assembly technique for developing surfaces with regular and controllable nanosized features. This method relies on the microphase separation of a BCP film and subsequent infiltration with inorganic species. The BCP film serves as a template, leaving behind inorganic replicas when removed. BCP patterning offers a promising, cost-effective alternative to standard nanopatterning techniques, featuring fewer processing steps and reduced energy use. However, BCP patterning can be complex and challenging to control. Varying the structural characteristics of the polymeric template (feature sizes) requires careful and often challenging synthesis of bespoke BCPs with controllable molecular weights (M w). To develop BCP patterning as a standard nanofabrication approach, a vapor-phase patterning (VPP) technology has been developed. VPP allows for the simultaneous, single-step, selective swelling of BCP nanodomains to precise feature sizes and morphologies while forming inorganic features by metallic precursor infiltration. Infiltration preserves the swollen arrangement, thus allowing for feature size selection without synthesizing BCPs with different M w, simplifying the process. VPP has the potential to revolutionize nanopatterning techniques in industries such as optical materials, materials for energy storage, sensors, and semiconductors by providing a pathway to efficient, precise, and cost-effective BCP template patterning.
Collapse
Affiliation(s)
- Eleanor Mullen
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Alberto Alvarez-Fernandez
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU)—Materials
Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Nadezda Prochukhan
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Arantxa Davó-Quiñonero
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
- Inorganic
Chemistry Department, University of Alicante, Carretera San Vicente del Raspeig
s/n, E-03080 Alicante, Spain
| | - Raman Bekarevich
- Advanced
Microscopy Laboratory (AML), Centre for Research on Adaptive Nanostructures
and Nanodevices (CRANN), Trinity College
Dublin, Dublin 2 D02 DA31, Ireland
| | - Farzan Gity
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
- Tyndall
National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Brendan Sheehan
- Tyndall
National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Jhonattan Frank Baez Vasquez
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Riley Gatensby
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Ahmed Bentaleb
- Centre
de
Recherche Paul Pascal (CRPP)—UMR 5031, Pessac 33600, France
| | - Alan Ward
- Imperial
College London, South
Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul K. Hurley
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
- Tyndall
National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Michael A. Morris
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| |
Collapse
|
2
|
Bellini B, Willard JR, Cetindag S, Tsai EHR, Li R, Kisslinger K, Kumar SK, Doerk GS. Assembling Vertical Block Copolymer Nanopores via Solvent Vapor Annealing on Homopolymer-Functionalized Substrates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35541-35553. [PMID: 38920286 DOI: 10.1021/acsami.4c05715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Utilizing the self-assembly of block copolymers with large Flory-Huggins interaction parameters (χ) for nanofabrication is a formidable challenge due to the attendant large surface energy differences between the blocks. This work reports a robust protocol for the fabrication of thin films with highly ordered cylindrical nanopore arrays via the self-assembly of an asymmetric poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) diblock copolymer blended with a P4VP homopolymer. The desired vertical domain orientation is achieved at the air-polymer interface by controlled solvent vapor annealing (SVA) using acetone, a solvent with weak selectivity for PS over P4VP, and at the substrate interface by functionalization using a hydroxy-terminated poly(2-vinylpyridine) (P2VP-OH) homopolymer brush. In contrast, the vertical cylinder orientation is unstable during acetone SVA on substrates functionalized using hydroxy-terminated poly(methyl methacrylate) (PMMA-OH). Although PMMA exhibits more balanced interfacial energies between PS and P4VP than P2VP in the dry state, it is also swollen more selectively by acetone. We hypothesize that the nearly balanced solvent swelling of the three polymers (P2VP, P4VP, and PS) stabilizes the vertical cylinder orientation, while unbalanced swelling (PMMA > P4VP and PS) does not. We further characterize pore formation by addition of a P4VP homopolymer and its postassembly extraction using ethanol, revealing a narrow window of pore size tunability. Notably, minimal differences in nanopore morphologies are observed for P4VP volume fractions as high as 0.1, regardless of the P4VP molar mass. However, further increasing the P4VP volume fraction results in domain reorientation or macrophase separation when its molar mass is less than or greater than the P4VP block molar mass, respectively. Using a P4VP homopolymer that is nearly equal in length to the P4VP block enables the fabrication of well-ordered arrays of vertical, through-film nanopores with high aspect ratios (>10), small periods (<23 nm), and diameters less than 10 nm.
Collapse
Affiliation(s)
- Beatrice Bellini
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | - Semih Cetindag
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Gregory S Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
3
|
Suthar J, Alvarez-Fernandez A, Osarfo-Mensah E, Angioletti-Uberti S, Williams GR, Guldin S. Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly. NANOSCALE HORIZONS 2023; 8:460-472. [PMID: 36825603 PMCID: PMC10042438 DOI: 10.1039/d2nh00424k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/23/2023] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are routinely released from nearly all cell types as transport vehicles and for cell communication. Crucially, they contain biomolecular content for the identification of health and disease states that can be detected from readily accessible physiological fluids, including urine, plasma, or saliva. Despite their clinical utility within noninvasive diagnostic platforms such as liquid biopsies, the currently available portfolio of analytical approaches are challenged by EV heterogeneity in size and composition, as well as the complexity of native biofluids. Quartz crystal microbalance with dissipation monitoring (QCM-D) has recently emerged as a powerful alternative for the phenotypic detection of EVs, offering multiple modes of analyte discrimination by frequency and dissipation. While providing rich data for sensor development, further progress is required to reduce detection limits and fully exploit the technique's potential within biosensing. Herein, we investigate the impact of nanostructuring the sensor electrode surface for enhancing its detection capabilities. We employ self-assembly of the block copolymer polystyrene-block-poly(4-vinylpyridine) to create well defined 2D gold islands via selective impregnation of the pyridine domain with gold precursors and subsequent removal of the template. When matched to the EV length scale, we find a 4-fold improvement in sensitivity despite a 4-fold reduction in area for analyte and ligand anchoring in comparison to a flat sensor surface. Creation of tailored and confined sensing regions interspersed by non-binding silica provides optimal spatial orientation for EV capture with reduced steric effects and negative cooperativity of grafted antibodies, offering a promising route for facilitated binding and enhanced performance of sensor platforms.
Collapse
Affiliation(s)
- Jugal Suthar
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Esther Osarfo-Mensah
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
4
|
Pula P, Leniart A, Majewski PW. Solvent-assisted self-assembly of block copolymer thin films. SOFT MATTER 2022; 18:4042-4066. [PMID: 35608282 DOI: 10.1039/d2sm00439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solvent-assisted block copolymer self-assembly is a compelling method for processing and advancing practical applications of these materials due to the exceptional level of the control of BCP morphology and significant acceleration of ordering kinetics. Despite substantial experimental and theoretical efforts devoted to understanding of solvent-assisted BCP film ordering, the development of a universal BCP patterning protocol remains elusive; possibly due to a multitude of factors which dictate the self-assembly scenario. The aim of this review is to aggregate both seminal reports and the latest progress in solvent-assisted directed self-assembly and to provide the reader with theoretical background, including the outline of BCP ordering thermodynamics and kinetics phenomena. We also indicate significant BCP research areas and emerging high-tech applications where solvent-assisted processing might play a dominant role.
Collapse
Affiliation(s)
- Przemyslaw Pula
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Arkadiusz Leniart
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| |
Collapse
|
5
|
Kulkarni AA, Doerk GS. Thin film block copolymer self-assembly for nanophotonics. NANOTECHNOLOGY 2022; 33:292001. [PMID: 35358955 DOI: 10.1088/1361-6528/ac6315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The nanophotonic engineering of light-matter interactions has profoundly changed research behind the design and fabrication of optical materials and devices. Metasurfaces-arrays of subwavelength nanostructures that interact resonantly with electromagnetic radiation-have emerged as an integral nanophotonic platform for a new generation of ultrathin lenses, displays, polarizers and other devices. Their success hinges on advances in lithography and nanofabrication in recent decades. While existing nanolithography techniques are suitable for basic research and prototyping, issues of cost, throughput, scalability, and substrate compatibility may preclude their use for many metasurface applications. Patterning via spontaneous self-assembly of block copolymer thin films offers an enticing alternative for nanophotonic manufacturing that is rapid, inexpensive, and applicable to large areas and diverse substrates. This review discusses the advantages and disadvantages of block copolymer-based nanopatterning and highlights recent progress in their use for broadband antireflection, surface enhanced Raman spectroscopy, and other nanophotonic applications. Recent advances in diversification of self-assembled block copolymer nanopatterns and improved processes for enhanced scalability of self-assembled nanopatterning using block copolymers are also discussed, with a spotlight on directions for future research that would enable a wider array of nanophotonic applications.
Collapse
Affiliation(s)
- Ashish A Kulkarni
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Gregory S Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| |
Collapse
|
6
|
Leniart A, Pula P, Style RW, Majewski PW. Pathway-Dependent Grain Coarsening of Block Copolymer Patterns under Controlled Solvent Evaporation. ACS Macro Lett 2022; 11:121-126. [PMID: 35574792 PMCID: PMC8772373 DOI: 10.1021/acsmacrolett.1c00677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
Solvent evaporation annealing (SEA) is a straightforward, single-step casting and annealing method of block copolymers (BCP) processing yielding large-grained morphologies in a very short time. Here, we present a quantitative analysis of BCP grain-coarsening in thin films under controlled evaporation of the solvent. Our study is aimed at understanding time and BCP concentration influence on the rate of the lateral growth of BCP grains. By systematically investigating the coarsening kinetics at various BCP concentrations, we observed a steeply decreasing exponential dependence of the kinetics power-law time exponent on polymer concentration. We used this dependence to formulate a mathematical model of BCP ordering under nonstationary conditions and a 2D, time- and concentration-dependent coarsening rate diagram, which can be used as an aid in engineering the BCP processing pathway in SEA and also in other directed self-assembly methods that utilize BCP-solvent interactions such as solvent vapor annealing.
Collapse
Affiliation(s)
| | - Przemyslaw Pula
- Department
of Chemistry, University of Warsaw, Warsaw 02089, Poland
| | - Robert W. Style
- Department
of Materials, Soft and Living Materials, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
| | | |
Collapse
|
7
|
Neppalli SN, Collins TW, Gholamvand Z, Cummins C, Morris MA, Mokarian-Tabari P. Defining Swelling Kinetics in Block Copolymer Thin Films: The Critical Role of Temperature and Vapour Pressure Ramp. Polymers (Basel) 2021; 13:4238. [PMID: 34883741 PMCID: PMC8659708 DOI: 10.3390/polym13234238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
We studied the kinetics of swelling in high-χ lamellar-forming poly(styrene)-block- poly(lactic acid) (PS-b-PLA) block copolymer (BCP) by varying the heating rate and monitoring the solvent vapour pressure and the substrate temperature in situ during solvo-thermal vapour annealing (STVA) in an oven, and analysing the resulting morphology. Our results demonstrate that there is not only a solvent vapour pressure threshold (120 kPa), but also that the rate of reaching this pressure threshold has a significant effect on the microphase separation and the resulting morphologies. To study the heating rate effect, identical films were annealed in a tetrahydrofuran (THF) vapour environment under three different ramp regimes, low (rT<1 °C/min), medium (2
Collapse
Affiliation(s)
- Sudhakara Naidu Neppalli
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Timothy W. Collins
- Department of Chemistry, University College Cork, Tyndall National Institute, T12 K8AF Cork, Ireland;
| | - Zahra Gholamvand
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Cian Cummins
- Centre de Recherche Paul Pascal (CRPP), The French National Centre for Scientific Research (CNRS), University of Bordeaux, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France;
- Laboratoire de Chimie des Polymeres Organiques (LCPO), University of Bordeaux, CNRS, Bordeaux INP, 16 Avenue Pey-Berland, CEDEX, 33607 Pessac, France
| | - Michael A. Morris
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Department of Chemistry, University College Cork, Tyndall National Institute, T12 K8AF Cork, Ireland;
| | - Parvaneh Mokarian-Tabari
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
8
|
Mullen E, Morris MA. Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1085. [PMID: 33922231 PMCID: PMC8146645 DOI: 10.3390/nano11051085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
The turn of the 21st century heralded in the semiconductor age alongside the Anthropocene epoch, characterised by the ever-increasing human impact on the environment. The ecological consequences of semiconductor chip manufacturing are the most predominant within the electronics industry. This is due to current reliance upon large amounts of solvents, acids and gases that have numerous toxicological impacts. Management and assessment of hazardous chemicals is complicated by trade secrets and continual rapid change in the electronic manufacturing process. Of the many subprocesses involved in chip manufacturing, lithographic processes are of particular concern. Current developments in bottom-up lithography, such as directed self-assembly (DSA) of block copolymers (BCPs), are being considered as a next-generation technology for semiconductor chip production. These nanofabrication techniques present a novel opportunity for improving the sustainability of lithography by reducing the number of processing steps, energy and chemical waste products involved. At present, to the extent of our knowledge, there is no published life cycle assessment (LCA) evaluating the environmental impact of new bottom-up lithography versus conventional lithographic techniques. Quantification of this impact is central to verifying whether these new nanofabrication routes can replace conventional deposition techniques in industry as a more environmentally friendly option.
Collapse
Affiliation(s)
- Eleanor Mullen
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| | - Michael A. Morris
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| |
Collapse
|
9
|
Selkirk A, Prochukhan N, Lundy R, Cummins C, Gatensby R, Kilbride R, Parnell A, Baez Vasquez J, Morris M, Mokarian-Tabari P. Optimization and Control of Large Block Copolymer Self-Assembly via Precision Solvent Vapor Annealing. Macromolecules 2021; 54:1203-1215. [PMID: 34276069 PMCID: PMC8280752 DOI: 10.1021/acs.macromol.0c02543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The self-assembly of ultra-high molecular weight (UHMW) block copolymers (BCPs) remains a complex and time-consuming endeavor owing to the high kinetic penalties associated with long polymer chain entanglement. In this work, we report a unique strategy of overcoming these kinetic barriers through precision solvent annealing of an UHMW polystyrene-block-poly(2-vinylpyridine) BCP system (M w: ∼800 kg/mol) by fast swelling to very high levels of solvent concentration (ϕs). Phase separation on timescales of ∼10 min is demonstrated once a thickness-dependent threshold ϕs value of ∼0.80-0.86 is achieved, resulting in lamellar feature spacings of over 190 nm. The threshold ϕs value was found to be greater for films with higher dry thickness (D 0) values. Tunability of the domain morphology is achieved through controlled variation of both D 0 and ϕs, with the kinetically unstable hexagonal perforated lamellar (HPL) phase observed at ϕs values of ∼0.67 and D 0 values of 59-110 nm. This HPL phase can be controllably induced into an order-order transition to a lamellar morphology upon further increase of ϕs to 0.80 or above. As confirmed by grazing-incidence small-angle X-ray scattering, the lateral ordering of the lamellar domains is shown to improve with increasing ϕs up to a maximum value at which the films transition to a disordered state. Thicker films are shown to possess a higher maximum ϕs value before transitioning to a disordered state. The swelling rate is shown to moderately influence the lateral ordering of the phase-separated structures, while the amount of hold time at a particular value of ϕs does not notably enhance the phase separation process. These large period self-assembled lamellar domains are then employed to facilitate pattern transfer using a liquid-phase infiltration method, followed by plasma etching, generating ordered, high aspect ratio Si nanowall structures with spacings of ∼190 nm and heights of up to ∼500 nm. This work underpins the feasibility of a room-temperature, solvent-based annealing approach for the reliable and scalable fabrication of sub-wavelength nanostructures via BCP lithography.
Collapse
Affiliation(s)
- Andrew Selkirk
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Nadezda Prochukhan
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Ross Lundy
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Cian Cummins
- CNRS,
Bordeaux INP, LCPO, UMR 5629 and CNRS, Centre de Recherche Paul Pascal,
UMR 5031, Université de Bordeaux, Pessac F-33600, France
| | - Riley Gatensby
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Rachel Kilbride
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Andrew Parnell
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Jhonattan Baez Vasquez
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Michael Morris
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Parvaneh Mokarian-Tabari
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Leniart A, Pula P, Tsai EHR, Majewski PW. Large-Grained Cylindrical Block Copolymer Morphologies by One-Step Room-Temperature Casting. Macromolecules 2020; 53:11178-11189. [PMID: 33380751 PMCID: PMC7759006 DOI: 10.1021/acs.macromol.0c02026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Indexed: 12/11/2022]
Abstract
We report a facile method of ordering block copolymer (BCP) morphologies in which the conventional two-step casting and annealing steps are replaced by a single-step process where microphase separation and grain coarsening are seamlessly integrated within the casting protocol. This is achieved by slowing down solvent evaporation during casting by introducing a nonvolatile solvent into the BCP casting solution that effectively prolongs the duration of the grain-growth phase. We demonstrate the utility of this solvent evaporation annealing (SEA) method by producing well-ordered large-molecular-weight BCP thin films in a total processing time shorter than 3 min without resorting to any extra laboratory equipment other than a basic casting device, i.e., spin- or blade-coater. By analyzing the morphologies of the quenched samples, we identify a relatively narrow range of polymer concentration in the wet film, just above the order-disorder concentration, to be critical for obtaining large-grained morphologies. This finding is corroborated by the analysis of the grain-growth kinetics of horizontally oriented cylindrical domains where relatively large growth exponents (1/2) are observed, indicative of a more rapid defect-annihilation mechanism in the concentrated BCP solution than in thermally annealed BCP melts. Furthermore, the analysis of temperature-resolved kinetics data allows us to calculate the Arrhenius activation energy of the grain coarsening in this one-step BCP ordering process.
Collapse
Affiliation(s)
| | - Przemyslaw Pula
- Department
of Chemistry, University of Warsaw, Warsaw 02089, Poland
| | - Esther H. R. Tsai
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | | |
Collapse
|
11
|
Bilchak CR, Govind S, Contreas G, Rasin B, Maguire SM, Composto RJ, Fakhraai Z. Kinetic Monitoring of Block Copolymer Self-Assembly Using In Situ Spectroscopic Ellipsometry. ACS Macro Lett 2020; 9:1095-1101. [PMID: 35653214 DOI: 10.1021/acsmacrolett.0c00444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the kinetic pathways of self-assembly in block copolymers (BCPs) has been a long-standing challenge, mostly due to limitations of in situ monitoring techniques. Here, we demonstrate an approach that uses optical birefringence, determined by spectroscopic ellipsometry (SE), as a measure of domain formation in cylinder- and lamellae-forming BCP films. The rapid experimental acquisition time in SE (ca. 1 sec) enables monitoring of the assembly/disassembly kinetics of BCP films during solvent-vapor annealing (SVA). We demonstrate that upon SVA, BCP films form ordered domains that are stable in the swollen state, but disorder upon rapid drying. Surprisingly, the disassembly during drying strongly depends on the duration of solvent exposure in the swollen state, explaining previous observations of loss of order in SVA processes. SE thus allows for decoupling of BCP self-assembly and disordering that occurs during solvent annealing and solvent evaporation, which is difficult to probe using other, slower techniques.
Collapse
|