1
|
Redford SA, Colen J, Shivers JL, Zemsky S, Molaei M, Floyd C, Ruijgrok PV, Vitelli V, Bryant Z, Dinner AR, Gardel ML. Motor crosslinking augments elasticity in active nematics. SOFT MATTER 2024; 20:2480-2490. [PMID: 38385209 PMCID: PMC10933839 DOI: 10.1039/d3sm01176c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only augments the contributions to nematic elasticity from excluded volume effects but dominates them. By altering motor kinetics we show that a competition between motor speed and crosslinking results in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking. Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide new insights for rationally engineering active materials.
Collapse
Affiliation(s)
- Steven A Redford
- The Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan Colen
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jordan L Shivers
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Sasha Zemsky
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Mehdi Molaei
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Carlos Floyd
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vincenzo Vitelli
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron R Dinner
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Sheung JY, Garamella J, Kahl SK, Lee BY, McGorty RJ, Robertson-Anderson RM. Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites. FRONTIERS IN PHYSICS 2022; 10:1055441. [PMID: 37547053 PMCID: PMC10403238 DOI: 10.3389/fphy.2022.1055441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.
Collapse
Affiliation(s)
- Janet Y. Sheung
- W. M. Keck Science Department, Scripps College, Claremont, CA, United States
- W. M. Keck Science Department, Pitzer College, Claremont, CA, United States
| | - Jonathan Garamella
- Physics and Biophysics Department, University of San Diego, San Diego, CA, United States
| | - Stella K. Kahl
- W. M. Keck Science Department, Scripps College, Claremont, CA, United States
| | - Brian Y. Lee
- W. M. Keck Science Department, Pitzer College, Claremont, CA, United States
| | - Ryan J. McGorty
- Physics and Biophysics Department, University of San Diego, San Diego, CA, United States
| | | |
Collapse
|
3
|
Berezney J, Goode BL, Fraden S, Dogic Z. Extensile to contractile transition in active microtubule-actin composites generates layered asters with programmable lifetimes. Proc Natl Acad Sci U S A 2022; 119:e2115895119. [PMID: 35086931 PMCID: PMC8812548 DOI: 10.1073/pnas.2115895119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
We study a reconstituted composite system consisting of an active microtubule network interdigitated with a passive network of entangled F-actin filaments. Increasing the concentration of filamentous actin controls the emergent dynamics, inducing a transition from turbulent-like flows to bulk contractions. At intermediate concentrations, where the active stresses change their symmetry from anisotropic extensile to isotropic contracting, the composite separates into layered asters that coexist with the background turbulent fluid. Contracted onion-like asters have a radially extending microtubule-rich cortex that envelops alternating layers of microtubules and F-actin. These self-regulating structures undergo internal reorganization, which appears to minimize the surface area and maintain the ordered layering, even when undergoing aster merging events. Finally, the layered asters are metastable structures. Their lifetime, which ranges from minutes to hours, is encoded in the material properties of the composite. These results challenge the current models of active matter. They demonstrate self-organized dynamical states and patterns evocative of those observed in the cytoskeleton do not require precise biochemical regulation, but can arise from purely mechanical interactions of actively driven filamentous materials.
Collapse
Affiliation(s)
- John Berezney
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA 02454;
- Department of Physics, University of California, Santa Barbara, CA 93106
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106
| |
Collapse
|
4
|
Abstract
Transport of intracellular components relies on a variety of active and passive mechanisms, ranging from the diffusive spreading of small molecules over short distances to motor-driven motion across long distances. The cell-scale behavior of these mechanisms is fundamentally dependent on the morphology of the underlying cellular structures. Diffusion-limited reaction times can be qualitatively altered by the presence of occluding barriers or by confinement in complex architectures, such as those of reticulated organelles. Motor-driven transport is modulated by the architecture of cytoskeletal filaments that serve as transport highways. In this review, we discuss the impact of geometry on intracellular transport processes that fulfill a broad range of functional objectives, including delivery, distribution, and sorting of cellular components. By unraveling the interplay between morphology and transport efficiency, we aim to elucidate key structure-function relationships that govern the architecture of transport systems at the cellular scale. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anamika Agrawal
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Zubenelgenubi C Scott
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
5
|
Walcott S, Warshaw DM. Modeling myosin Va liposome transport through actin filament networks reveals a percolation threshold that modulates transport properties. Mol Biol Cell 2021; 33:ar18. [PMID: 34935414 PMCID: PMC9236151 DOI: 10.1091/mbc.e21-08-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myosin Va (myoVa) motors transport membrane-bound cargo through three-dimensional, intracellular actin filament networks. We developed a coarse-grained, in silico model to predict how actin filament density (3-800 filaments) within a randomly oriented actin network affects fluid-like liposome (350 nm vs. 1750 nm) transport by myoVa motors. Five thousand simulated liposomes transported within each network adopted one of three states: transport, tug-of-war, or diffusion. Diffusion due to liposome detachment from actin rarely occurred given at least 10 motors on the liposome surface. However, with increased actin density, liposomes transitioned from primarily directed transport on single actin filaments to an apparent random walk, resulting from a mixture of transport and tug-of-wars as the probability of encountering additional actin filaments increased. This phase transition arises from a percolation phase transition at a critical number of accessible actin filaments, Nc. Nc is a geometric property of the actin network that depends only on the position and polarity of the actin filaments, transport distance, and the liposome diameter, as evidenced by a fivefold increase in liposome diameter resulting in a fivefold decrease in Nc. Thus in cells, actin network density and cargo size may be regulated to match cargo delivery to the cell’s physiological demands.
Collapse
Affiliation(s)
- S Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609
| | - D M Warshaw
- Molecular Physiology and Biophysics, University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Burlington, VT 05405
| |
Collapse
|
6
|
Mogre SS, Christensen JR, Reck-Peterson SL, Koslover EF. Optimizing microtubule arrangements for rapid cargo capture. Biophys J 2021; 120:4918-4931. [PMID: 34687720 DOI: 10.1016/j.bpj.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022] Open
Abstract
Cellular functions such as autophagy, cell signaling, and vesicular trafficking involve the retrograde transport of motor-driven cargo along microtubules. Typically, newly formed cargo engages in slow undirected movement from its point of origin before attaching to a microtubule. In some cell types, cargo destined for delivery to the perinuclear region relies on capture at dynein-enriched loading zones located near microtubule plus ends. Such systems include extended cell regions of neurites and fungal hyphae, where the efficiency of the initial diffusive loading process depends on the axial distribution of microtubule plus ends relative to the initial cargo position. We use analytic mean first-passage time calculations and numerical simulations to model diffusive capture processes in tubular cells, exploring how the spatial arrangement of microtubule plus ends affects the efficiency of retrograde cargo transport. Our model delineates the key features of optimal microtubule arrangements that minimize mean cargo capture times. Namely, we show that configurations with a single microtubule plus end abutting the distal tip and broadly distributed other plus ends allow for efficient capture in a variety of different scenarios for retrograde transport. Live-cell imaging of microtubule plus ends in Aspergillus nidulans hyphae indicates that their distributions exhibit these optimal qualitative features. Our results highlight important coupling effects between the distribution of microtubule tips and retrograde cargo transport, providing guiding principles for the spatial arrangement of microtubules within tubular cell regions.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California San Diego, La Jolla, California
| | - Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California; Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Elena F Koslover
- Department of Physics, University of California San Diego, La Jolla, California.
| |
Collapse
|
7
|
Weirich KL, Stam S, Munro E, Gardel ML. Actin bundle architecture and mechanics regulate myosin II force generation. Biophys J 2021; 120:1957-1970. [PMID: 33798565 DOI: 10.1016/j.bpj.2021.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022] Open
Abstract
The actin cytoskeleton is a soft, structural material that underlies biological processes such as cell division, motility, and cargo transport. The cross-linked actin filaments self-organize into a myriad of architectures, from disordered meshworks to ordered bundles, which are hypothesized to control the actomyosin force generation that regulates cell migration, shape, and adhesion. Here, we use fluorescence microscopy and simulations to investigate how actin bundle architectures with varying polarity, spacing, and rigidity impact myosin II dynamics and force generation. Microscopy reveals that mixed-polarity bundles formed by rigid cross-linkers support slow, bidirectional myosin II filament motion, punctuated by periods of stalled motion. Simulations reveal that these locations of stalled myosin motion correspond to sustained, high forces in regions of balanced actin filament polarity. By contrast, mixed-polarity bundles formed by compliant, large cross-linkers support fast, bidirectional motion with no traps. Simulations indicate that trap duration is directly related to force magnitude and that the observed increased velocity corresponds to lower forces resulting from both the increased bundle compliance and filament spacing. Our results indicate that the microstructures of actin assemblies regulate the dynamics and magnitude of myosin II forces, highlighting the importance of architecture and mechanics in regulating forces in biological materials.
Collapse
Affiliation(s)
- Kimberly L Weirich
- James Franck Institute, University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina
| | - Samantha Stam
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Molecular and Cellular Biology, University of California, Davis, Davis, California
| | - Edwin Munro
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, Illinois
| | - Margaret L Gardel
- James Franck Institute, University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Physics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
8
|
Jung W, Tabatabai AP, Thomas JJ, Tabei SMA, Murrell MP, Kim T. Dynamic motions of molecular motors in the actin cytoskeleton. Cytoskeleton (Hoboken) 2019; 76:517-531. [PMID: 31758841 DOI: 10.1002/cm.21582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Abstract
During intracellular transport, cellular cargos, such as organelles, vesicles, and proteins, are transported within cells. Intracellular transport plays an important role in diverse cellular functions. Molecular motors walking on the cytoskeleton facilitate active intracellular transport, which is more efficient than diffusion-based passive transport. Active transport driven by kinesin and dynein walking on microtubules has been studied well during recent decades. However, mechanisms of active transport occurring in disorganized actin networks via myosin motors remain elusive. To provide physiologically relevant insights, we probed motions of myosin motors in actin networks under various conditions using our well-established computational model that rigorously accounts for the mechanical and dynamical behaviors of the actin cytoskeleton. We demonstrated that myosin motions can be confined due to three different reasons in the absence of F-actin turnover. We verified mechanisms of motor stalling using in vitro reconstituted actomyosin networks. We also found that with F-actin turnover, motors consistently move for a long time without significant confinement. Our study sheds light on the importance of F-actin turnover for effective active transport in the actin cytoskeleton.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - A Pasha Tabatabai
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut
| | - Jacob J Thomas
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, 215 Begeman Hall, Cedar Falls, Iowa
| | - Michael P Murrell
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut.,Department of Physics, Yale University. 217 Prospect Street, New Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| |
Collapse
|