1
|
Chakraborty S, Ramola K. Long-range correlations in elastic moduli and local stresses at the unjamming transition. SOFT MATTER 2024; 20:4895-4904. [PMID: 38860707 DOI: 10.1039/d4sm00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We explore the behaviour of spatially heterogeneous elastic moduli as well as the correlations between local moduli in model solids with short-range repulsive potentials. We show through numerical simulations that local elastic moduli exhibit long-range correlations, similar to correlations in the local stresses. Specifically, the correlations in local shear moduli exhibit anisotropic behavior at large lengthscales characterized by pinch-point singularities in Fourier space, displaying a structural pattern akin to shear stress correlations. Focussing on two-dimensional jammed solids approaching the unjamming transition, we show that stress correlations exhibit universal properties, characterized by a quadratic p2 dependence of the correlations as the pressure p approaches zero, independent of the details of the model. In contrast, the modulus correlations exhibit a power-law dependence with different exponents depending on the specific interaction potential. Furthermore, we illustrate that while affine responses lack long-range correlations, the total modulus, which encompasses non-affine behavior, exhibits long-range correlations.
Collapse
Affiliation(s)
| | - Kabir Ramola
- Tata Institute of Fundamental Research, Hyderabad 500046, India.
| |
Collapse
|
2
|
Wang L, Fu L, Nie Y. Density of states below the first sound mode in 3D glasses. J Chem Phys 2022; 157:074502. [DOI: 10.1063/5.0102081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glasses feature universally low-frequency excess vibrational modes beyond Debye prediction, which could help rationalize, e.g., the glasses’ unusual temperature dependence of thermal properties compared to crystalline solids. The way the density of states of these low-frequency excess modes D( ω) depends on the frequency ω has been debated for decades. Recent simulation studies of 3D glasses suggest that D( ω) scales universally with ω4 in a low-frequency regime below the first sound mode. However, no simulation study has ever probed as low frequencies as possible to test directly whether this quartic law could work all the way to extremely low frequencies. Here, we calculated D( ω) below the first sound mode in 3D glasses over a wide range of frequencies. We find D( ω) scales with ω β with β < 4 at very low frequencies examined, while the ω4 law works only in a limited intermediate-frequency regime in some glasses. Moreover, our further analysis suggests our observation does not depend on glass models or glass stabilities examined. The ω4 law of D( ω) below the first sound mode is dominant in current simulation studies of 3D glasses, and our direct observation of the breakdown of the quartic law at very low frequencies thus leaves an open but important question that may attract more future numerical and theoretical studies.
Collapse
Affiliation(s)
- Lijin Wang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Licun Fu
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Yunhuan Nie
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
3
|
Mizuno H, Hachiya M, Ikeda A. Phonon transport properties of particulate physical gels. J Chem Phys 2022; 156:204505. [DOI: 10.1063/5.0090233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Particulate physical gels are sparse, low-density amorphous materials in which clusters of glasses are connected to form a heterogeneous network structure. This structure is characterized by two length scales, ξ s and ξ G: ξ s measures the length of heterogeneities in the network structure and ξ G is the size of glassy clusters. Accordingly, the vibrational states (eigenmodes) of such a material also exhibit a multiscale nature with two characteristic frequencies, [Formula: see text] and ω G, which are associated with ξ s and ξ G, respectively: (i) phonon-like vibrations in the homogeneous medium at [Formula: see text], (ii) phonon-like vibrations in the heterogeneous medium at [Formula: see text], and (iii) disordered vibrations in the glassy clusters at ω > ω G. Here, we demonstrate that the multiscale characteristics seen in the static structures and vibrational states also extend to the phonon transport properties. Phonon transport exhibits two distinct crossovers at frequencies ω* and ω G (or at wavenumbers of [Formula: see text] and [Formula: see text]). In particular, both transverse and longitudinal phonons cross over between Rayleigh scattering at [Formula: see text] and diffusive damping at [Formula: see text]. Remarkably, the Ioffe–Regel limit is located at the very low frequency of ω*. Thus, phonon transport is localized above ω*, even where phonon-like vibrational states persist. This markedly strong scattering behavior is caused by the sparse, porous structure of the gel.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Makoto Hachiya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Guiselin B, Tarjus G, Berthier L. Static self-induced heterogeneity in glass-forming liquids: Overlap as a microscope. J Chem Phys 2022; 156:194503. [PMID: 35597648 DOI: 10.1063/5.0086517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose and numerically implement a local probe of the static self-induced heterogeneity characterizing glass-forming liquids. This method relies on the equilibrium statistics of the overlap between pairs of configurations measured in mesoscopic cavities with unconstrained boundaries. By systematically changing the location of the probed cavity, we directly detect spatial variations of the overlap fluctuations. We provide a detailed analysis of the statistics of a local estimate of the configurational entropy, and we infer an estimate of the surface tension between amorphous states, ingredients that are both at the basis of the random first-order transition theory of glass formation. Our results represent the first direct attempt to visualize and quantify the self-induced heterogeneity underpinning the thermodynamics of glass formation. They pave the way for the development of coarse-grained effective theories and for a direct assessment of the role of thermodynamics in the activated dynamics of deeply supercooled liquids.
Collapse
Affiliation(s)
- Benjamin Guiselin
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
5
|
Szamel G, Flenner E. Microscopic analysis of sound attenuation in low-temperature amorphous solids reveals quantitative importance of non-affine effects. J Chem Phys 2022; 156:144502. [DOI: 10.1063/5.0085199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sound attenuation in low-temperature amorphous solids originates from their disordered structure. However, its detailed mechanism is still being debated. Here, we analyze sound attenuation starting directly from the microscopic equations of motion. We derive an exact expression for the zero-temperature sound damping coefficient. We verify that the sound damping coefficients calculated from our expression agree very well with results from independent simulations of sound attenuation. Small wavevector analysis of our expression shows that sound attenuation is primarily determined by the non-affine displacements’ contribution to the sound wave propagation coefficient coming from the frequency shell of the sound wave. Our expression involves only quantities that pertain to solids’ static configurations. It can be used to evaluate the low-temperature sound damping coefficients without directly simulating sound attenuation.
Collapse
Affiliation(s)
- Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
6
|
Mahajan S, Ciamarra MP. Unifying Description of the Vibrational Anomalies of Amorphous Materials. PHYSICAL REVIEW LETTERS 2021; 127:215504. [PMID: 34860101 DOI: 10.1103/physrevlett.127.215504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The vibrational density of states D(ω) of solids controls their thermal and transport properties. In crystals, the low-frequency modes are extended phonons distributed in frequency according to Debye's law, D(ω)∝ω^{2}. In amorphous solids, phonons are damped, and at low frequency D(ω) comprises extended modes in excess over Debye's prediction, leading to the so-called boson peak in D(ω)/ω^{2} at ω_{bp}, and quasilocalized ones. Here we show that boson peak and phonon attenuation in the Rayleigh scattering regime are related, as suggested by correlated fluctuating elasticity theory, and that amorphous materials can be described as homogeneous isotropic elastic media punctuated by quasilocalized modes acting as elastic heterogeneities. Our numerical results resolve the conflict between theoretical approaches attributing amorphous solids' vibrational anomalies to elastic disorder and localized defects.
Collapse
Affiliation(s)
- Shivam Mahajan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- CNRS@CREATE LTD, 1 Create Way, #08-01 CREATE Tower, Singapore 138602
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| |
Collapse
|
7
|
Tomoshige N, Goto S, Mizuno H, Mori T, Kim K, Matubayasi N. Understanding the scaling of boson peak through insensitivity of elastic heterogeneity to bending rigidity in polymer glasses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:274002. [PMID: 33930889 DOI: 10.1088/1361-648x/abfd51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Amorphous materials exhibit peculiar mechanical and vibrational properties, including non-affine elastic responses and excess vibrational states, i.e., the so-called boson peak (BP). For polymer glasses, these properties are considered to be affected by the bending rigidity of the constituent polymer chains. In our recent work [Tomoshige,et al2019,Sci. Rep.919514], we have revealed simple relationships between the variations of vibrational properties and the global elastic properties: the response of the BP scales only with that of the global shear modulus. This observation suggests that the spatial heterogeneity of the local shear modulus distribution is insensitive to changes in the bending rigidity. Here, we demonstrate the insensitivity of elastic heterogeneity by directly measuring the local shear modulus distribution. We also study transverse sound wave propagation, which is also shown to scale only with the global shear modulus. Through these analyses, we conclude that the bending rigidity does not alter the spatial heterogeneity of the local shear modulus distribution, which yields vibrational and acoustic properties that are controlled solely by the global shear modulus of a polymer glass.
Collapse
Affiliation(s)
- Naoya Tomoshige
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shota Goto
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tatsuya Mori
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
8
|
Kapteijns G, Richard D, Bouchbinder E, Lerner E. Elastic moduli fluctuations predict wave attenuation rates in glasses. J Chem Phys 2021; 154:081101. [DOI: 10.1063/5.0038710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - David Richard
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Parmar ADS, Guiselin B, Berthier L. Stable glassy configurations of the Kob-Andersen model using swap Monte Carlo. J Chem Phys 2020; 153:134505. [PMID: 33032429 DOI: 10.1063/5.0020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The swap Monte Carlo algorithm allows the preparation of highly stable glassy configurations for a number of glass-formers but is inefficient for some models, such as the much studied binary Kob-Andersen (KA) mixture. We have recently developed generalizations to the KA model where swap can be very effective. Here, we show that these models can, in turn, be used to considerably enhance the stability of glassy configurations in the original KA model at no computational cost. We successfully develop several numerical strategies both in and out of equilibrium to achieve this goal and show how to optimize them. We provide several physical measurements indicating that the proposed algorithms considerably enhance mechanical and thermodynamic stability in the KA model, including a transition toward brittle yielding behavior. Our results thus pave the way for future studies of stable glasses using the KA model.
Collapse
Affiliation(s)
- Anshul D S Parmar
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Benjamin Guiselin
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
10
|
Wang L, Szamel G, Flenner E. Sound attenuation in finite-temperature stable glasses. SOFT MATTER 2020; 16:7165-7171. [PMID: 32671375 DOI: 10.1039/d0sm00633e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The temperature dependence of the thermal conductivity of amorphous solids is markedly different from that of their crystalline counterparts, but exhibits universal behaviour. Sound attenuation is believed to be related to this universal behaviour. Recent computer simulations demonstrated that in the harmonic approximation sound attenuation Γ obeys quartic, Rayleigh scattering scaling for small wavevectors k and quadratic scaling for wavevectors above the Ioffe-Regel limit. However, simulations and experiments do not provide a clear picture of what to expect at finite temperatures where anharmonic effects become relevant. Here we study sound attenuation at finite temperatures for model glasses of various stability, from unstable glasses that exhibit rapid aging to glasses whose stability is equal to those created in laboratory experiments. We find several scaling laws depending on the temperature and stability of the glass. First, we find the large wavevector quadratic scaling to be unchanged at all temperatures. Second, we find that at small wavevectors Γ∼k1.5 for an aging glass, but Γ∼k2 when the glass does not age on the timescale of the calculation. For our most stable glass, we find that Γ∼k2 at small wavevectors, then a crossover to Rayleigh scattering scaling Γ∼k4, followed by another crossover to the quadratic scaling at large wavevectors. Our computational observation of this quadratic behavior reconciles simulation, theory and experiment, and will advance the understanding of the temperature dependence of thermal conductivity of glasses.
Collapse
Affiliation(s)
- Lijin Wang
- School of Physics and Materials Science, Anhui University, Hefei 230601, P. R. China.
| | | | | |
Collapse
|