1
|
Magrinya P, Palacios-Alonso P, Llombart P, Delgado-Buscalioni R, Alexander-Katz A, Arriaga LR, Aragones JL. Rolling vesicles: From confined rotational flows to surface-enabled motion. Proc Natl Acad Sci U S A 2025; 122:e2424236122. [PMID: 40131950 PMCID: PMC12002264 DOI: 10.1073/pnas.2424236122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Friction forces are essential for cell movement, yet they also trigger numerous active cellular responses, complicating their measurement in vivo. Here, we introduce a synthetic model designed to measure friction forces between biomimetic membranes and substrates. The model consists of a vesicle with precisely controlled properties, fabricated via microfluidics, encapsulating a single ferromagnetic particle that is magnetically driven to rotate. The rotation of the particle generates a confined rotational flow, setting the vesicle membrane into motion. By adjusting the magnetic field frequency and vesicle size, the rotation frequency of the vesicle can be finely controlled, resulting in a rolling vesicle that functions as an effective tribological tool across a wide frequency range. At low frequencies, molecular contact between the membrane and substrate dominates frictional interactions, which enables determination of the contact friction coefficient. At higher frequencies, lubrication becomes predominant, causing the vesicles to slip rather than roll. Adjusting membrane fluidity and incorporating specific ligand-receptor interactions within this model will enable detailed studies of frictional forces in more complex biomimetic systems, providing key insights into the mechanisms of cell movement and mechanotransduction.
Collapse
Affiliation(s)
- Paula Magrinya
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center, Instituto Nicolás Cabrera, Universidad Autonoma de Madrid, Madrid28049, Spain
| | - Pablo Palacios-Alonso
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center, Instituto Nicolás Cabrera, Universidad Autonoma de Madrid, Madrid28049, Spain
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid28049, Spain
| | - Pablo Llombart
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center, Instituto Nicolás Cabrera, Universidad Autonoma de Madrid, Madrid28049, Spain
| | - Rafael Delgado-Buscalioni
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center, Instituto Nicolás Cabrera, Universidad Autonoma de Madrid, Madrid28049, Spain
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Laura R. Arriaga
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center, Instituto Nicolás Cabrera, Universidad Autonoma de Madrid, Madrid28049, Spain
| | - Juan L. Aragones
- Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center, Instituto Nicolás Cabrera, Universidad Autonoma de Madrid, Madrid28049, Spain
| |
Collapse
|
2
|
Zheng X, Li Y, Kurths J, Xu Y. Noise-induced stochastic switching of microcargoes transport in artificial microtubule. CHAOS (WOODBURY, N.Y.) 2024; 34:091101. [PMID: 39236109 DOI: 10.1063/5.0226188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Synchronization plays an important role in propelling microrobots, especially for those driven by an external magnetic field. Here, we substantially contribute to the understanding of a novel out-of-sync phenomenon called "slip-out", which has been recently discovered in experiments of an artificial microtubule (AMT). In a deterministic situation, we interpret and quantitatively characterize the switching in such a system between the stick and slip modes, whose different combinations over time define four long-term states. The stick-and-slip state is the most typical "slip-out" state with periodic switching, caused by both the phase lock between the microrod and the magnetic field, and the time-dependent magnetic moment. We then illustrate that thermal noise leads to stochastic switching by stimulating the phase difference across a specific threshold randomly. Finally, we reproduce the average velocity simulatively, which is highly consistent with real experiments. Importantly, the nearly permanent slip state is probed by our analysis of long-term states rather than observing real experiments. The investigation supports the design and operational strategies of AMT and other microrobots driven by magnetic fields.
Collapse
Affiliation(s)
- Xinwei Zheng
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongge Li
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany
- Department of Physics, Humboldt University Berlin, Berlin 12489, Germany
| | - Yong Xu
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- MOE Key Laboratory for Complexity Science in Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Gu H, Chen Y, Lüders A, Bertrand T, Hanedan E, Nielaba P, Bechinger C, Nelson BJ. Scalable high-throughput microfluidic separation of magnetic microparticles. DEVICE 2024; 2:100403. [PMID: 39081390 PMCID: PMC11285115 DOI: 10.1016/j.device.2024.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024]
Abstract
Surface-engineered magnetic microparticles are used in chemical and biomedical engineering due to their ease of synthesis, high surface-to-volume ratio, selective binding, and magnetic separation. To separate them from fluid suspensions, existing methods rely on the magnetic force introduced by the local magnetic field gradient. However, this strategy has poor scalability because the magnetic field gradient decreases rapidly as one moves away from the magnets. Here, we present a scalable high-throughput magnetic separation strategy using a rotating permanent magnet and two-dimensional arrays of micromagnets. Under a dynamic magnetic field, nickel micromagnets allow the surrounding magnetic microparticles to self-assemble into large clusters and effectively propel themselves through the flow. The collective speed of the microparticle swarm reaches about two orders of magnitude higher than the gradient-based separation method over a wide range of operating frequencies and distances from a rotating magnet.
Collapse
Affiliation(s)
- Hongri Gu
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Yonglin Chen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Anton Lüders
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Thibaud Bertrand
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Emre Hanedan
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Peter Nielaba
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Clemens Bechinger
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| |
Collapse
|
4
|
Chamolly A, Michelin S, Lauga E. Colloidal bubble propulsion mediated through viscous flows. SOFT MATTER 2024; 20:4744-4764. [PMID: 38837398 DOI: 10.1039/d4sm00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Bubble-propelled catalytic colloids stand out as a uniquely efficient design for artificial controllable micromachines, but so far lack a general theoretical framework that explains the physics of their propulsion. Here we develop a combined diffusive and hydrodynamic theory of bubble growth near a spherical catalytic colloid, that allows us to explain the underlying mechanism and the influence of environmental and material parameters. We identify two dimensionless groups, related to colloidal activity and the background fluid, that govern a saddle-node bifurcation of the bubble growth dynamics, and calculate the generated flows analytically for both slip and no slip boundary conditions on the bubble. We finish with a discussion of the assumptions and predictions of our model in the context of existing experimental results, and conclude that some of the observed behaviour, notably the ratchet-like gait, may stem from peculiarities of the experimental setup rather than fundamental physics of the propulsive mechanism.
Collapse
Affiliation(s)
- Alexander Chamolly
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Developmental and Stem Cell Biology Department, F-75015 Paris, France.
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Sébastien Michelin
- LadHyX, CNRS - Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau Cedex, France.
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, UK.
| |
Collapse
|
5
|
Bozuyuk U, Ozturk H, Sitti M. The mismatch between experimental and computational fluid dynamics analyses for magnetic surface microrollers. Sci Rep 2023; 13:10196. [PMID: 37353527 DOI: 10.1038/s41598-023-37332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Magnetically actuated Janus surface microrollers are promising microrobotic platform with numerous potential biomedical engineering applications. While the locomotion models based on a "rotating sphere on a nearby wall" can be adapted to surface microrollers, real-world dynamics may differ from the proposed theories/simulations. In this study, we examine the locomotion efficiency of surface microrollers with diameters of 5, 10, 25, and 50 µm and demonstrate that computational fluid dynamics simulations cannot accurately capture locomotion characteristics for different sizes of microrollers. Specifically, we observe a significant mismatch between lift forces predicted by simulations and opposite balancing forces, particularly for smaller microrollers. We propose the existence of an unaccounted force component in the direction of lift, which is not included in the computational fluid dynamics simulations. Overall, our findings provide a deeper understanding of the physical mechanisms underlying surface microroller locomotion and have important implications for future applications in biomedical engineering.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Hakancan Ozturk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- School of Medicine and School of Engineering, Koç University, Istanbul, 34450, Turkey.
| |
Collapse
|
6
|
van der Wee EB, Blackwell BC, Balboa Usabiaga F, Sokolov A, Katz IT, Delmotte B, Driscoll MM. A simple catch: Fluctuations enable hydrodynamic trapping of microrollers by obstacles. SCIENCE ADVANCES 2023; 9:eade0320. [PMID: 36888698 PMCID: PMC9995068 DOI: 10.1126/sciadv.ade0320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
It is known that obstacles can hydrodynamically trap bacteria and synthetic microswimmers in orbits, where the trapping time heavily depends on the swimmer flow field and noise is needed to escape the trap. Here, we use experiments and simulations to investigate the trapping of microrollers by obstacles. Microrollers are rotating particles close to a bottom surface, which have a prescribed propulsion direction imposed by an external rotating magnetic field. The flow field that drives their motion is quite different from previously studied swimmers. We found that the trapping time can be controlled by modifying the obstacle size or the colloid-obstacle repulsive potential. We detail the mechanisms of the trapping and find two remarkable features: The microroller is confined in the wake of the obstacle, and it can only enter the trap with Brownian motion. While noise is usually needed to escape traps in dynamical systems, here, we show that it is the only means to reach the hydrodynamic attractor.
Collapse
Affiliation(s)
- Ernest B. van der Wee
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Brendan C. Blackwell
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | | | - Andrey Sokolov
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Isaiah T. Katz
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Blaise Delmotte
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France
| | - Michelle M. Driscoll
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
7
|
Junot G, Calero C, García-Torres J, Pagonabarraga I, Tierno P. Unveiling the Rolling to Kayak Transition in Propelling Nanorods with Cargo Trapping and Pumping. NANO LETTERS 2023; 23:850-857. [PMID: 36689916 DOI: 10.1021/acs.nanolett.2c03897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers undergo a dynamic transition from a rolling to a kayak-like motion due to the increase in viscous drag and acquire a finite inclination angle with respect to the plane perpendicular to the bottom surface. We explain these experimental observations with a theoretical model which considers the nanorod as a pair of ferromagnetic particles hydrodynamically interacting with a close stationary surface. Further, we quantify how efficiently microscopic cargoes can be trapped or expelled from the moving nanorod and use numerical simulations to unveil the generated hydrodynamic flow field. These propulsion regimes can be implemented in microfluidic devices to perform precise operations based on the selective sorting of microscopic cargoes.
Collapse
Affiliation(s)
- Gaspard Junot
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - José García-Torres
- Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politécnica de Catalunya (UPC), 08930Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne (EPFL), Batochime, Avenue Forel 2, 1015Lausanne, Switzerland
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| |
Collapse
|
8
|
Zhang Z, Sukhov A, Harting J, Malgaretti P, Ahmed D. Rolling microswarms along acoustic virtual walls. Nat Commun 2022; 13:7347. [PMID: 36446799 PMCID: PMC9708833 DOI: 10.1038/s41467-022-35078-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Rolling is a ubiquitous transport mode utilized by living organisms and engineered systems. However, rolling at the microscale has been constrained by the requirement of a physical boundary to break the spatial homogeneity of surrounding mediums, which limits its prospects for navigation to locations with no boundaries. Here, in the absence of real boundaries, we show that microswarms can execute rolling along virtual walls in liquids, impelled by a combination of magnetic and acoustic fields. A rotational magnetic field causes individual particles to self-assemble and rotate, while the pressure nodes of an acoustic standing wave field serve as virtual walls. The acoustic radiation force pushes the microswarms towards a virtual wall and provides the reaction force needed to break their fore-aft motion symmetry and induce rolling along arbitrary trajectories. The concept of reconfigurable virtual walls overcomes the fundamental limitation of a physical boundary being required for universal rolling movements.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- grid.5801.c0000 0001 2156 2780Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8803 Switzerland
| | - Alexander Sukhov
- grid.8385.60000 0001 2297 375XHelmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Erlangen, 91058 Germany
| | - Jens Harting
- grid.8385.60000 0001 2297 375XHelmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Erlangen, 91058 Germany ,grid.5330.50000 0001 2107 3311Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, 90429 Germany
| | - Paolo Malgaretti
- grid.8385.60000 0001 2297 375XHelmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Erlangen, 91058 Germany
| | - Daniel Ahmed
- grid.5801.c0000 0001 2156 2780Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8803 Switzerland
| |
Collapse
|
9
|
Bozuyuk U, Aghakhani A, Alapan Y, Yunusa M, Wrede P, Sitti M. Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces. Nat Commun 2022; 13:6289. [PMID: 36271078 PMCID: PMC9586970 DOI: 10.1038/s41467-022-34023-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/10/2022] [Indexed: 12/25/2022] Open
Abstract
Biological microorganisms overcome the Brownian motion at low Reynolds numbers by utilizing symmetry-breaking mechanisms. Inspired by them, various microrobot locomotion methods have been developed at the microscale by breaking the hydrodynamic symmetry. Although the boundary effects have been extensively studied for microswimmers and employed for surface-rolling microrobots, the behavior of microrobots in the proximity of multiple wall-based "confinement" is yet to be elucidated. Here, we study the confinement effect on the motion of surface-rolling microrobots. Our experiments demonstrate that the locomotion efficiency of spherical microrollers drastically decreases in confined spaces due to out-of-plane rotational flows generated during locomotion. Hence, a slender microroller design, generating smaller rotational flows, is shown to outperform spherical microrollers in confined spaces. Our results elucidate the underlying physics of surface rolling-based locomotion in confined spaces and present a design strategy with optimal flow generation for efficient propulsion in such areas, including blood vessels and microchannels.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany ,grid.5801.c0000 0001 2156 2780Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Amirreza Aghakhani
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Yunus Alapan
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Muhammad Yunusa
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Paul Wrede
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany ,grid.5801.c0000 0001 2156 2780Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Metin Sitti
- grid.419534.e0000 0001 1015 6533Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany ,grid.5801.c0000 0001 2156 2780Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland ,grid.15876.3d0000000106887552School of Medicine and School of Engineering, Koç University, Istanbul, 34450 Turkey
| |
Collapse
|