1
|
Chen L, Xue S, Li X, Deng L, Li J, Zhou J, Gao Y, Duan X, Lu L. Combination of Cu-BTC- and FeCo-MOF-Derived Carbon Enhanced Molecularly Imprinted Electrochemical Sensor for Highly Sensitive and Selective Detection of Benomyl in Fruits and Vegetables. Molecules 2025; 30:1869. [PMID: 40363676 PMCID: PMC12073791 DOI: 10.3390/molecules30091869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
The development of sensitive and selective methods for detecting pesticide residues has become paramount for ensuring food safety. In this work, a high-performance molecularly imprinted electrochemical sensor based on the composite of Cu-BTC- and FeCo-ZIF-derived N-doped carbon (FeCo@NC), synthesized by pyrolysis and electrodeposition, was developed for Benomyl (BN) detection. The materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In this sensing system, the Cu-BTC/FeCo@NC composite used as the electrode substrate displayed a large specific surface area, high electronic conductivity, and rich active catalytic sites, demonstrating excellent electrocatalytic ability toward BN oxidation. Meanwhile, Cu-BTC, with its abundant surface functional groups, facilitated strong hydrogen bonding interactions with the imprinted template molecule of 3,4-ethylenedioxythiophene (EDOT), promoting the formation of a uniform molecularly imprinted membrane on the substrate material surface. The introduced MIP-PEDOT could enhance the selective recognition and enrichment of the target BN, leading to an amplified detection signal. Thanks to the synergistic effects between Cu-BTC/FeCo@NC and MIP-PEDOT, the proposed sensor achieved a low detection limit of 1.67 nM. Furthermore, the fabricated sensor exhibited high selectivity, reproducibility, and interference resistance in detecting BN. The method has been successfully applied to the determination of BN in vegetable and fruit samples, indicating its potential for use in practical applications.
Collapse
Affiliation(s)
- Lili Chen
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China; (L.C.); (S.X.); (J.L.)
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials Sciencee, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (L.D.); (J.Z.)
| | - Shuya Xue
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China; (L.C.); (S.X.); (J.L.)
| | - Xin Li
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials Sciencee, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (L.D.); (J.Z.)
| | - Linbo Deng
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials Sciencee, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (L.D.); (J.Z.)
| | - Jiapeng Li
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China; (L.C.); (S.X.); (J.L.)
| | - Jing Zhou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials Sciencee, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (L.D.); (J.Z.)
| | - Yansha Gao
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials Sciencee, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (L.D.); (J.Z.)
| | - Xuemin Duan
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China; (L.C.); (S.X.); (J.L.)
- Ji’an Key Laboratory of Photoelectric Crystal Materials and Device, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, School of Chemistry and Chemical Engineering, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Institute of Applied Chemistry, Jinggangshan University, Ji’an 343009, China
| | - Limin Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials Sciencee, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (L.D.); (J.Z.)
| |
Collapse
|
2
|
Li W, Liu Y, Azam A, Liu Y, Yang J, Wang D, Sorrell CC, Zhao C, Li S. Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404658. [PMID: 38923073 DOI: 10.1002/adma.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Catalysts play a crucial role in water electrolysis by reducing the energy barriers for hydrogen and oxygen evolution reactions (HER and OER). Research aims to enhance the intrinsic activities of potential catalysts through material selection, microstructure design, and various engineering techniques. However, the energy consumption of catalysts has often been overlooked due to the intricate interplay among catalyst microstructure, dimensionality, catalyst-electrolyte-gas dynamics, surface chemistry, electron transport within electrodes, and electron transfer among electrode components. Efficient catalyst development for high-current-density applications is essential to meet the increasing demand for green hydrogen. This involves transforming catalysts with high intrinsic activities into electrodes capable of sustaining high current densities. This review focuses on current improvement strategies of mass exchange, charge transfer, and reducing electrode resistance to decrease energy consumption. It aims to bridge the gap between laboratory-developed, highly efficient catalysts and industrial applications regarding catalyst structural design, surface chemistry, and catalyst-electrode interplay, outlining the development roadmap of hierarchically structured electrode-based water electrolysis for minimizing energy loss in electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ashraful Azam
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Charles Christopher Sorrell
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Wang W, Ibarlucea B, Huang C, Dong R, Al Aiti M, Huang S, Cuniberti G. Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions. NANOSCALE HORIZONS 2024; 9:1432-1474. [PMID: 38984482 DOI: 10.1039/d4nh00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal-organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, etc. MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, etc., making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.
Collapse
Affiliation(s)
- Wei Wang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20009, Spain
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Muhannad Al Aiti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- Dresden Center for Nanoanalysis, Technische Universität Dresden, 01062 Dresden, Germany
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
4
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
Affiliation(s)
- Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lu Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ke Li
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, 2 Dublin, Ireland
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
5
|
Binyamin S, Shimoni R, Liberman I, Ifraemov R, Tashakory A, Hod I. Nickel-Iron-Modified 2D Metal-Organic Framework as a Tunable Precatalyst for Electrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13849-13857. [PMID: 38469800 DOI: 10.1021/acsami.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Mixed-metal metal-organic framework (MOF)-based water oxidation precatalysts have aroused a great deal of attention due to their remarkable catalytic performance. Yet, despite significant advancement in this field, there is still a need to design new MOF platforms that allow simple and systematic control over the final catalyst's metal composition. Here, we show that a Zr-BTB 2D-MOF could be used to construct a series of Ni-Fe-based oxide hydroxide water oxidation precatalysts with diverse Ni-Fe compositions. In situ Raman spectroscopy characterization revealed that the MOF precatalysts could be electrochemically converted to the active catalysts (NiFeOOH). In turn, it was found that the highest water oxidation activity was obtained with a catalyst containing a 47:53 Ni:Fe molar ratio. Additionally, the obtained catalyst is also active toward electrochemical methanol oxidation, exhibiting high selectivity toward the formation of formic acid. Hence, these results could pave the way for the development of efficient electrocatalytic materials for a variety of oxidative reactions.
Collapse
Affiliation(s)
- Shahar Binyamin
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ayelet Tashakory
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
6
|
Liu L, He Y, Fan X, Wang Y, Shi Z, Zhao M, Zhu C, Yan F, Zhang X, Zhang X, Chen Y. In-situ reconstruction of rock-like 3D hierarchical MIL-53(Fe) self-supporting electrode with oxygen vacancy induced ultra-long stable and efficient water oxidation. J Colloid Interface Sci 2024; 657:538-549. [PMID: 38070339 DOI: 10.1016/j.jcis.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/02/2024]
Abstract
The exploitation of efficient, stable and cheap electrocatalyst for oxygen evolution reaction (OER) is very significant to the development of energy technology. In this study, Fe-based metal-organic frameworks (MIL-53(Fe)) self-supporting electrode with a 3D hierarchical open structure was developed through a semi-sacrificial strategy. The self-supporting electrode exhibits an excellent OER performance with an overpotential of 328 mV at 100 mA cm-2 in 1 M KOH, which is superior than that of IrO2 catalyst. Importantly, the optimized self-supporting electrode could operate at 100 mA cm-2 for 520 h without visible decrease in activity. It was also found that the structure of MIL-53(Fe) was in-situ self-reconstructed into oxyhydroxides during OER process. However, the 3D hierarchical open structure assembled with nano-microstructures kept well, which ensured the long-term stability of our self-supporting electrode for OER. Furthermore, density functional theory (DFT) calculations reveal that the FeOOH with rich oxygen vacancy transformed from MIL-53(Fe) plays a key role for the OER catalytic activity. And, the uninterrupted formation of oxygen vacancy during OER process ensures the continuous OER catalytic activity, which is the original source for the ultra-long stability of the self-supporting electrode toward OER. This work explores the way for the construction of efficient self-supporting oxygen electrodes based on MOFs.
Collapse
Affiliation(s)
- Lina Liu
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University, Qiqihar 161006, China; Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yuqian He
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xiaocheng Fan
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yue Wang
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zhichun Shi
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University, Qiqihar 161006, China
| | - Ming Zhao
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University, Qiqihar 161006, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Feng Yan
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yujin Chen
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
8
|
Hu K, Guo Q, Zhou J, Qi L, Dai R, Xiong X, Zou Z, Huang K. One step synthesis of Co-Ni bimetallic organic frameworks as a highly active and durable electrocatalyst for efficient water oxidation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Orzari LO, Assumpção MHMT, Nandenha J, Neto AO, Junior LHM, Bergamini M, Janegitz BC. Pd, Ag and Bi carbon-supported electrocatalysts as electrochemical multifunctional materials for ethanol oxidation and dopamine determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Preparation of NiFeCr-based trimetal organic frameworks as electrocatalyst for direct use in oxygen evolution reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Liu YL, Liu XY, Feng L, Shao LX, Li SJ, Tang J, Cheng H, Chen Z, Huang R, Xu HC, Zhuang JL. Two-Dimensional Metal-Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. CHEMSUSCHEM 2022; 15:e202102603. [PMID: 35092355 DOI: 10.1002/cssc.202102603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional metal-organic nanosheets (2D MONs) are an emerging class of ultrathin, porous, and crystalline materials. The organic/inorganic hybrid nature offers MONs distinct advantages over other inorganic nanosheets in terms of diversity of organic ligands and metal notes. Compared to bulk three-dimensional metal-organic frameworks, 2D MONs possess merits of high density and readily accessible catalytic sites, reduced diffusion pathways for reactants/products, and fast electron transport. These features endow MONs with enhanced physical/chemical properties and are ideal for heterogeneous catalysis. In this Review, state-of-the-art synthetic methods for the fabrication of 2D MONs were summarized. The advances of 2D MONs-based materials for electrocatalysis and photocatalysis, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2 RR), and electro-/photocatalytic organic transformations were systematically discussed. Finally, the challenges and perspectives regarding future design and synthesis of 2D MONs for high-performance electrocatalysis and photocatalysis were provided.
Collapse
Affiliation(s)
- Ya-Long Liu
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Xiang-Yue Liu
- College of Chemistry, Key Laboratory for Analytical Science of Food Safety, and Biology, Ministry of Education, Fuzhou University, 350108, Fuzhou, P. R. China
| | - Li Feng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Lan-Xing Shao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Si-Jun Li
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Jing Tang
- College of Chemistry, Key Laboratory for Analytical Science of Food Safety, and Biology, Ministry of Education, Fuzhou University, 350108, Fuzhou, P. R. China
| | - Hu Cheng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Rui Huang
- Stake Key Laboratory of Physical Chemistry of Solid Surface, iChem, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Hai-Chao Xu
- Stake Key Laboratory of Physical Chemistry of Solid Surface, iChem, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| |
Collapse
|
12
|
Shahbazi Farahani F, Rahmanifar MS, Noori A, El-Kady MF, Hassani N, Neek-Amal M, Kaner RB, Mousavi MF. Trilayer Metal-Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. J Am Chem Soc 2022; 144:3411-3428. [PMID: 35167746 DOI: 10.1021/jacs.1c10963] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The need for enhanced energy storage and improved catalysts has led researchers to explore advanced functional materials for sustainable energy production and storage. Herein, we demonstrate a reductive electrosynthesis approach to prepare a layer-by-layer (LbL) assembled trimetallic Fe-Co-Ni metal-organic framework (MOF) in which the metal cations within each layer or at the interface of the two layers are linked to one another by bridging 2-amino-1,4-benzenedicarboxylic acid linkers. Tailoring catalytically active sites in an LbL fashion affords a highly porous material that exhibits excellent trifunctional electrocatalytic activities toward the hydrogen evolution reaction (ηj=10 = 116 mV), oxygen evolution reaction (ηj=10 = 254 mV), as well as oxygen reduction reaction (half-wave potential = 0.75 V vs reference hydrogen electrode) in alkaline solutions. The dispersion-corrected density functional theory calculations suggest that the prominent catalytic activity of the LbL MOF toward the HER, OER, and ORR is due to the initial negative adsorption energy of water on the metal nodes and the elongated O-H bond length of the H2O molecule. The Fe-Co-Ni MOF-based Zn-air battery exhibits a remarkable energy storage performance and excellent cycling stability of over 700 cycles that outperform the commercial noble metal benchmarks. When assembled in an asymmetric device configuration, the activated carbon||Fe-Co-Ni MOF supercapacitor provides a superb specific energy and a power of up to 56.2 W h kg-1 and 42.2 kW kg-1, respectively. This work offers not only a novel approach to prepare an LbL assembled multimetallic MOF but also provides a benchmark for a multifunctional electrocatalyst for water splitting and Zn-air batteries.
Collapse
Affiliation(s)
- Fatemeh Shahbazi Farahani
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, P.O. Box 14115-175, Iran
| | | | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, P.O. Box 14115-175, Iran
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Nasim Hassani
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788-15811, P.O. Box: 16875-163, Iran
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788-15811, P.O. Box: 16875-163, Iran.,Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States.,Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, P.O. Box 14115-175, Iran
| |
Collapse
|
13
|
Morphology-controlled synthesis of Cu2S for efficient oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Huang Y, Pei F, Ma G, Ye Z, Peng X, Li D, Jin Z. Bicontinuous Nanoporous Nitrogen/Carbon-Codoped FeCoNiMg Alloy as a High-Performance Electrode for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:784-793. [PMID: 35021578 DOI: 10.1021/acsami.1c18739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The kinetics of the oxygen evolution reaction (OER) in aqueous electrolytes is relatively slow, which seriously limits the energy efficiency of electricity-to-hydrogen conversion. Herein, a bicontinuous nanoporous FeCoNiMg alloy is prepared by high heat sintering method based on the nanoscale Kirkendall effect and the surface is codoped with nitrogen and carbon elements by the nitrocarburizing method (denoted NC-FeCoNiMg). The three-dimensional (3D) nanoporous NC-FeCoNiMg alloy electrode achieves superior electrocatalytic performance for the OER in alkaline media, delivering a low Tafel slope (34.6 mV dec-1) and small overpotentials (235 and 290 mV at 10 and 100 mA cm-2, respectively). Under consecutive high current densities, the NC-FeCoNiMg electrode still exhibits excellent long-term stability, and the OER activity even increases after testing for 100 h at a high current density of 1000 mA cm-2. Comprehensive studies reveal that the N/C codoping of the inner and outer surfaces dramatically improves the electrocatalytic activity of the NC-FeCoNiMg electrode. This work demonstrates an efficient nanoarchitectural construction and a surface modulation strategy to increase the electrocatalytic activity and stability of transition-metal-based electrodes for the OER, holding great promise for fulfilling the requirements for the large-scale production of clean hydrogen energy.
Collapse
Affiliation(s)
- Yuqian Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Feng Pei
- State Grid JiangXi Electric Power Research Institute, Nanchang 330096, China
| | - Guang Ma
- Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
| | - Zhiguo Ye
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xinyuan Peng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Duosheng Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Hu N, Liao J, Liu X, Wei J, Wang L, Li M, Zong N, Xu R, Yang L, Wang J. CNTs support 2D NiMOF nanosheets for asymmetric supercapacitors with high energy density. Dalton Trans 2022; 51:16344-16353. [DOI: 10.1039/d2dt02055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NiMOF/CNTs composite with NiMOF nanosheets grows along the CNTs is synthesized with a one-step solvothermal method, and the NiMOF/CNTs//AC asymmetric supercapacitors provide a high energy density of 113.8 Wh kg−1 at 800.0 W kg−1.
Collapse
Affiliation(s)
- Nianxiang Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Jiang Liao
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Xueliang Liu
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Jinlong Wei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Li Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Min Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Naixuan Zong
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Linjing Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Junli Wang
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China
| |
Collapse
|
16
|
Zhan T, Zou Y, Yang Y, Ma X, Zhang Z, Xiang S. Two‐dimensional Metal‐organic Frameworks for Electrochemical CO
2
Reduction Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tingting Zhan
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
| | - Yingbing Zou
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
| | - Ying Yang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
| | - Xiuling Ma
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
17
|
Singh B, Singh A, Yadav A, Indra A. Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Ma J, Lu X, Wang C, Wang S, He W, Zhang B, Shao L, Zhai X, Han J, Feng S, Fu Y, Qi W. Synthesis of amorphous FeNiCo trimetallic hybrid electrode from ZIF precursors for efficient oxygen evolution reaction. NANOTECHNOLOGY 2021; 33:035403. [PMID: 34619660 DOI: 10.1088/1361-6528/ac2dc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Development of non-noble multi-metallic electrocatalyst with high oxygen evolution reaction (OER) activity via a simple and low-cost method is of great importance for improving the efficiency of water electro-chemical splitting. Herein, a solution impregnation strategy was proposed to synthesize novel FeNi-doped Co-ZIF-L trimetallic hybrid electrocatalyst using Co-ZIF-L as sacrificial templates and Fe and Ni ions as etchants and dopants. This synthetic strategy could be realized via the etching-coprecipitation mechanism to obtain an amorphous hybrid containing multi-metal hydroxides. The as-prepared electrocatalyst loaded on Ni foam displays a low overpotential of 245 mV at 10 mA·cm-2, a small Tafel slope of 54.9 mV·dec-1, and excellent stability at least 12 h in the OER process. The facile and efficient synthetic strategy presents a new entry for the fabrication of ZIFs-derived multi-metallic electrocatalysts for OER electrocatalysis.
Collapse
Affiliation(s)
- Junchao Ma
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xingyu Lu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Chao Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Sha Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Wenxiu He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Bing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xu Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Jingrui Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Shiyi Feng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| |
Collapse
|
19
|
Dutta A, Pan Y, Liu JQ, Kumar A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214074] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Wang H, Chen BH, Liu DJ. Metal-Organic Frameworks and Metal-Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008023. [PMID: 33984166 DOI: 10.1002/adma.202008023] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2 /N2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
Collapse
Affiliation(s)
- Hao Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Biao-Hua Chen
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Di-Jia Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
21
|
Lin Y, Zhao L, Wang L, Gong Y. Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction. Dalton Trans 2021; 50:4280-4287. [PMID: 33688870 DOI: 10.1039/d0dt04133e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing highly efficient and stable electrocatalysts toward the oxygen evolution reaction (OER) is essential for large-scale sustainable energy conversion and storage technologies. Herein, we design and synthesize a ruthenium (Ru) doped NiFe bimetallic metal-organic framework (MOF) deposited on the nickel foam (Ru-NiFe-MOF/NF) by a facile one-pot hydrothermal reaction. Ru-NiFe-MOF/NF exhibits favourable electrocatalytic OER activity in alkaline solution, and requires a low overpotential of 205 mV to achieve 10 mA cm-2, a small Tafel slope of 50 mV dec-1, and long-term electrochemical stability over 100 h. This work demonstrates the rational nano-architectural design and synthesis of predominantly efficient and robust cation-doped MOF-derived materials for energy catalysis and beyond.
Collapse
Affiliation(s)
- Yu Lin
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi 030051, China.
| | | | | | | |
Collapse
|
22
|
Xue Y, Zhao G, Yang R, Chu F, Chen J, Wang L, Huang X. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. NANOSCALE 2021; 13:3911-3936. [PMID: 33595021 DOI: 10.1039/d0nr09064f] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ultrathin two-dimensional metal-organic frameworks (2D MOFs) have recently attracted extensive interest in various catalytic fields (e.g., electrocatalysis, photocatalysis, thermocatalysis) due to their ultrathin thickness, large surface area, abundant accessible unsaturated active sites and tunable surface properties. Besides tuning the intrinsic properties of pristine 2D MOFs by changing the metal nodes and organic ligands, one of the hot research trends is to develop 2D MOF hybrids and 2D MOF-derived materials with higher stability and conductivity in order to further increase their activity and durability. Here, the synthesis of 2D MOF nanosheets is briefly summarized and discussed. More attention is focused on summaries and discussions about the applications of these 2D MOFs, their hybrids and their derived materials as electrocatalysts, photocatalysts and thermocatalysts. The superior properties and catalytic performance of these 2D MOF-based catalysts compared to their 3D MOF counterparts in electrocatalysis, photocatalysis and thermocatalysis are highlighted. The enhanced activities of 2D MOFs, their hybrids and derivatives come from abundant accessible active sites, a high density of unsaturated metal nodes, ultrathin thickness, and tunable microenvironments around the MOFs. Views regarding current and future challenges in the field, and new advances in science and technology to meet these challenges, are also presented. Finally, conclusions and outlooks in this field are provided.
Collapse
Affiliation(s)
- Yanpeng Xue
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Gongchi Zhao
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Ruiying Yang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Feng Chu
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Juan Chen
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Lei Wang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Xiubing Huang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
23
|
Chen C, Wang J, Li P, Tian Q, Xiao Z, Li S, Cai N, Xue Y, Chen W, Yu F. Bimetal‐organic Framework Encapsulated in Graphene Aerogel‐grafted Ni Foam: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chen Chen
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Pan Li
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Qifeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Zhuangwei Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Shuaijie Li
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Weimin Chen
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P.R. China
| |
Collapse
|
24
|
Zhang M, Xu W, Li T, Zhu H, Zheng Y. In Situ Growth of Tetrametallic FeCoMnNi-MOF-74 on Nickel Foam as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Oxygen and Hydrogen. Inorg Chem 2020; 59:15467-15477. [PMID: 32991151 DOI: 10.1021/acs.inorgchem.0c02504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multivariate metal-organic frameworks (MTV-MOFs) have drawn much attention in recent years for their promising applications in many fields of chemistry and materials. Constructing functional MOFs from multiple components for electrochemical water is crucial to high performance renewable energy storage and conversion devices. In this work, a series of bitmetallic-, trimetallic-, and tetrametallic-MOF-74/NFs were grown in situ on nickel foam (NF) by a facile solvothermal route. Specifically, the optimized FeCoMnNi-MOF-74/NF with a multilevel and hollow nanostructure was successfully fabricated and used as highly efficient bifunctional electrocatalysts for water splitting. It exhibited an ultralow overpotential of 250 and 108 mV to achieve the current density of 50 and 10 mA cm-2, along with the relatively small Tafel slope of 41.28 and 72.89 mV dec-1 for OER and HER in 1 M KOH, respectively. It is superior to other multimetallic-MOF-74 composites at the same condition and also surpasses the benchmark of commercial noble-metal catalysts as well. As a result, a low cell voltage of ca. 1.62 V was obtained at a current density of 10 mA cm-2, when tetrametallic FeCoMnNi-MOF-74/NF is employed as both anode and cathode electrodes for the real water splitting. The present work potentially provides a new insight into prospecting and designing multivariate MOFs as a promising material for efficient electrocatalysis in the practical application.
Collapse
Affiliation(s)
- Mengyang Zhang
- Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wei Xu
- Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tingting Li
- Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Honglin Zhu
- Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yueqing Zheng
- Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
25
|
Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0190-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Li C, Li XJ, Zhao ZY, Li FL, Xue JY, Niu Z, Gu HW, Braunstein P, Lang JP. Iron-doped NiCo-MOF hollow nanospheres for enhanced electrocatalytic oxygen evolution. NANOSCALE 2020; 12:14004-14010. [PMID: 32579652 DOI: 10.1039/d0nr01218a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of metal-organic frameworks (MOFs) as high-efficiency electrocatalysts for water splitting has attracted special attention due to their unique structural features including high porosity, large surface areas, high concentrations of active sites, uniform pore sizes and shapes, etc. Most of the related reports focus on the in situ generation of high-efficiency electrocatalysts by annealed MOFs. However, the pyrolysis process usually destroys the porous structure of MOFs and reduces the number of active sites due to the absence of organic ligands and agglomeration of metal centers. In this work, we prepared unique NiCo-MOF hollow nanospheres (NiCo-MOF HNSs) by a solvothermal method and further fabricated Fe-doped NiCo-MOF HNSs (Fe@NiCo-MOF HNSs) by a simple impregnation-drying method. Significant enhancement of electrocatalytic activity of Fe@NiCo-MOF HNSs was witnessed because of the doped Fe. Compared with the parent NiCo-MOF HNSs, the optimized Fe@NiCo-MOF HNSs exhibited a lower overpotential of 244 mV at 10 mA·cm-2 with a smaller Tafel slope of 48.61 mV·dec-1, which was lowered by ca. 90 mV due to the influence of Fe doping on the electronic structure of the active centers of Ni and Co. The above materials also displayed excellent stability without obvious activity decay for at least 16 hours. These findings present a new entry in the design and fabrication of high-efficiency MOF-based electrocatalysts for energy conversion.
Collapse
Affiliation(s)
- Cong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Wang Y, Arandiyan H, Dastafkan K, Li Y, Zhao C. Common Pitfalls of Reporting Electrocatalysts for Water Splitting. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0107-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Xue JY, Li C, Li FL, Gu HW, Braunstein P, Lang JP. Recent advances in pristine tri-metallic metal-organic frameworks toward the oxygen evolution reaction. NANOSCALE 2020; 12:4816-4825. [PMID: 32057061 DOI: 10.1039/c9nr10109h] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pristine metal-organic frameworks (MOFs) have received much attention in recent years due to their high specific surface areas, large porosity, excellent pore size distributions, flexible structure, and remarkable catalytic properties. The design of functional MOFs that can function as efficient HER and OER catalysts is significant in solving the energy crisis but remains a big challenge. Tri-metallic metal-organic frameworks show a good application prospect in water oxidation. In this review, we are going to focus on the latest progress and future trends in the development of pristine trimetallic MOFs with respect to the OER. The synergistic effect between multi-metal active sites is effective at improving the intrinsic activity of MOFs toward the OER. By summarizing the synthesis method of tri-metallic MOFs and observing their performance toward the oxygen evolution reaction, we hope that this review will trigger new developments in coordination chemistry, electrochemistry, nanomaterials and energy materials.
Collapse
Affiliation(s)
- Jiang-Yan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Cong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Fei-Long Li
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 99 South 3rd load, Changshu 215500, Jiangsu, People's Republic of China
| | - Hong-Wei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4, rue Blaise Pascal - CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
30
|
Singh B, Indra A. Designing Self‐Supported Metal‐Organic Framework Derived Catalysts for Electrochemical Water Splitting. Chem Asian J 2020; 15:607-623. [DOI: 10.1002/asia.201901810] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Baghendra Singh
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India
| | - Arindam Indra
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
31
|
Zhao K, Zhu W, Liu S, Wei X, Ye G, Su Y, He Z. Two-dimensional metal-organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis. NANOSCALE ADVANCES 2020; 2:536-562. [PMID: 36133218 PMCID: PMC9419112 DOI: 10.1039/c9na00719a] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/05/2020] [Indexed: 05/23/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) and their derivatives with excellent dimension-related properties, e.g. high surface areas, abundantly accessible metal nodes, and tailorable structures, have attracted intensive attention as energy storage materials and electrocatalysts. A major challenge on the road toward the commercialization of 2D MOFs and their derivatives is to achieve the facile and controllable synthesis of 2D MOFs with high quality and at low cost. Significant developments have been made in the synthesis and applications of 2D MOFs and their derivatives in recent years. In this review, we first discuss the state-of-the-art synthetic strategies (including both top-down and bottom-up approaches) for 2D MOFs. Subsequently, we review the most recent application progress of 2D MOFs and their derivatives in the fields of electrochemical energy storage (e.g., batteries and supercapacitors) and electrocatalysis (of classical reactions such as the HER, OER, ORR, and CO2RR). Finally, the challenges and promising strategies for the synthesis and applications of 2D MOFs and their derivatives are addressed for future development.
Collapse
Affiliation(s)
- Kuangmin Zhao
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University Changsha Hunan 410083 P. R. China
| | - Weiwei Zhu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University Changsha Hunan 410083 P. R. China
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University Changsha Hunan 410083 P. R. China
| | - Xianli Wei
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University Changsha Hunan 410083 P. R. China
| | - Guanying Ye
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University Changsha Hunan 410083 P. R. China
| | - Yuke Su
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University Changsha Hunan 410083 P. R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University Changsha Hunan 410083 P. R. China
| |
Collapse
|
32
|
Kwon J, Han H, Choi S, Park K, Jo S, Paik U, Song T. Current Status of Self‐Supported Catalysts for Robust and Efficient Water Splitting for Commercial Electrolyzer. ChemCatChem 2019. [DOI: 10.1002/cctc.201901638] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiseok Kwon
- Department of Energy engineeringHanyang University Seoul 133-791 Republic of Korea
| | - HyukSu Han
- Department of Materials science and EngineeringHongik University Sejong 30016 Republic of Korea
| | - Seungun Choi
- Department of Energy engineeringHanyang University Seoul 133-791 Republic of Korea
| | - Keemin Park
- Department of Energy engineeringHanyang University Seoul 133-791 Republic of Korea
| | - Seonghan Jo
- Department of Energy engineeringHanyang University Seoul 133-791 Republic of Korea
| | - Ungyu Paik
- Department of Energy engineeringHanyang University Seoul 133-791 Republic of Korea
| | - Taeseup Song
- Department of Energy engineeringHanyang University Seoul 133-791 Republic of Korea
| |
Collapse
|