1
|
Spirobifluorene derivatives and their biomaterial applications: Current trends. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Pahal S, Boranna R, Prashanth GR, Varma MM. Simplifying Molecular Transport in Polyelectrolyte Multilayer Thin Films. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem) Bengaluru Karnataka 560065 India
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
| | - Rakshith Boranna
- Department of Electronics and Communication Engineering National Institute of Technology Goa Farmagudi Ponda Goa 403401 India
| | - Gurusiddappa R. Prashanth
- Department of Electronics and Communication Engineering National Institute of Technology Goa Farmagudi Ponda Goa 403401 India
| | - Manoj M. Varma
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
| |
Collapse
|
3
|
Su K, Sun N, Yan Z, Jin S, Li X, Wang D, Zhou H, Yao J, Chen C. Dual-Switching Electrochromism and Electrofluorochromism Derived from Diphenylamine-Based Polyamides with Spirobifluorene/Pyrene as Bridged Fluorescence Units. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22099-22107. [PMID: 32366091 DOI: 10.1021/acsami.0c01021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochromic (EC)/electrofluorochromic (EFC) bifunctional materials are receiving great attention because of their promising applications in optoelectronic devices. However, the development of ideal EC/EFC bifunctional materials is still a great challenge because of the poor integration of EC/EFC performances (optical contrast, response speed, and switching stability). Herein, we reported two novel diphenylamine-based mixed valence (MV) polyamides (S-HPA and P-HPA) with spirobifluorene (2,7-positions) and pyrene (1,6-positions) as bridged fluorescence units, respectively, showing impressive cyclability and fluorescence contrast with rapid switching. Through the formation of an effective electronic coupling between the two nitrogen centers using spirobifluorene/pyrene bridges, we demonstrated that different bridges have significant effects on the thermal and electrooptical characteristics of polyamides. In addition to lower fluorescence quantum yield and glass transition temperature, the S-HPA exhibited superior cyclability (contrast change <3.4%/14% over 500/300 cycles for EC/EFC switching), higher color/fluorescence contrast (64%/304%), and faster switching time (<2.6 s), mainly owing to the shorter conjugated length and more twisted configuration of the spirobifluorene bridge. The design principle of MV polymers with fluorophore bridges proposed here will be a promising way to realize high-performance EC/EFC devices and will also provide new insights into their future development and applications.
Collapse
Affiliation(s)
- Kaixin Su
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ningwei Sun
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institut für Polymerforschung Dresden e.V, Hohe Strasse 6, Dresden D-01069, Germany
| | - Zhihua Yan
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Sizhuo Jin
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiaoqian Li
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Daming Wang
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hongwei Zhou
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jianan Yao
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Chunhai Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| |
Collapse
|