1
|
Li G, Xian S, Cheng X, Hou Y, Jia W, Ma Y. Efficacy of Oroxylin A in ameliorating renal fibrosis with emphasis on Sirt1 activation and TGF-β/Smad3 pathway modulation. Front Pharmacol 2024; 15:1499012. [PMID: 39687299 PMCID: PMC11646733 DOI: 10.3389/fphar.2024.1499012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Renal fibrosis poses a serious threat to human health. At present, there are few types of traditional Chinese medicine used to treat this disease, and Oroxylin A (OA), as a natural product with multiple biological activities, is expected to be used for the treatment of renal fibrosis. Methods The tolerance of osteoarthritis and its impact on renal fibrosis were studied through ADMET, Lipinski's filter, establishment of a unilateral ureteral obstruction (UUO) model, and molecular docking. Results OA has good drug tolerance. Compared with the sham group, UUO mice that did not receive OA treatment showed severe tubular dilation and atrophy, extracellular matrix (ECM) deposition, and inflammatory cell infiltration in their kidneys, while OA-treated mice showed significant improvement in these symptoms. OA treatment remarkably restrained the accumulation of fibronectin and α-SMA. Moreover, OA treatment remarkably decreased the abnormal upregulation of inflammatory factors (IL-1β, IL-6, and TNF-α) in the obstructed kidney of UUO mice. Sirtuin1 (Sirt1) expression was markedly diminished in the kidneys of UUO mice and TGF-β1-induced HK-2 cells, whereas this reduction was largely reversed after OA treatment. The results support that OA exerts antifibrotic effects partly through the promotion of the activity of Sirt1. In in vitro results, OA treatment markedly inhibited the activation of Smad3 in UUO mice, thereby ameliorating renal fibrosis. OA could form hydrogen bonds with key the amino acid ASN226 in Sirt1, thereby activating Sirt1, which might also be the reason why OA could resist renal fibrosis. Discussion Our study indicated that OA might exert anti-renal fibrosis effects through the activation of Sirt1 and the suppression of the TGF-β/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Guangzhuang Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Sentao Xian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China
| | - Xianchao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yunhua Hou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Wenqing Jia
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China
| | - Yukui Ma
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China
| |
Collapse
|
2
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
3
|
Polymeric Systems for the Controlled Release of Flavonoids. Pharmaceutics 2023; 15:pharmaceutics15020628. [PMID: 36839955 PMCID: PMC9964149 DOI: 10.3390/pharmaceutics15020628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Flavonoids are natural compounds that are attracting great interest in the biomedical field thanks to the wide spectrum of their biological properties. Their employment as anticancer, anti-inflammatory, and antidiabetic drugs, as well as for many other pharmacological applications, is extensively investigated. One of the most successful ways to increase their therapeutic efficacy is to encapsulate them into a polymeric matrix in order to control their concentration in the physiological fluids for a prolonged time. The aim of this article is to provide an updated overview of scientific literature on the polymeric systems developed so far for the controlled release of flavonoids. The different classes of flavonoids are described together with the polymers most commonly employed for drug delivery applications. Representative drug delivery systems are discussed, highlighting the most common techniques for their preparation. The flavonoids investigated for polymer system encapsulation are then presented with their main source of extraction and biological properties. Relevant literature on their employment in this context is reviewed in relationship to the targeted pharmacological and biomedical applications.
Collapse
|
4
|
Tuli HS, Garg VK, Kumar A, Aggarwal D, Anand U, Parashar NC, Saini AK, Mohapatra RK, Dhama K, Kumar M, Singh T, Kaur J, Sak K. Anticancer potential of oroxylin A: from mechanistic insight to synergistic perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:191-212. [PMID: 36214865 DOI: 10.1007/s00210-022-02298-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 01/29/2023]
Abstract
Oroxylin A (OA), a well-known constituent of the root of Scutellariae plants, has been used in ethnomedicine already for centuries in treating various neoplastic disorders. However, only recent molecular studies have revealed the different mechanisms behind its action, demonstrating antiproliferative, anti-inflammatory, and proapoptotic effects, restricting also the spread of cancer cells to distant organs. A variety of cellular targets and modulated signal transduction pathways regulated by OA have been determined in diverse cells derived from different malignant tissues. In this review article, these anticancer activities are thoroughly described, representing OA as a potential lead structure for the design of novel more potent anticancer medicines. In addition, co-effects of this natural compound with conventional anticancer agents are analyzed and the advantages provided by nanotechnological methods for more efficient application of OA are discussed. In this way, OA might represent an excellent example of using ethnopharmacological knowledge for designing modern medicines.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar , 143005, Punjab, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala 134007, Haryana, India
| | - Tejveer Singh
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | | |
Collapse
|
5
|
Chen S, Wang Z, Liu L, Li Y, Ni X, Yuan H, Wang C. Redox homeostasis modulation using theranostic AIE nanoparticles results in positive-feedback drug accumulation and enhanced drug penetration to combat drug-resistant cancer. Mater Today Bio 2022; 16:100396. [PMID: 36060105 PMCID: PMC9434132 DOI: 10.1016/j.mtbio.2022.100396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-resistant cancers usually have multiple barriers to compromise the effect of therapies, of which multidrug-resistance (MDR) phenotype as the intracellular barrier and dense tumor matrix as the extracellular barrier, significantly contribute to the poor anticancer performance of current drug delivery systems (DDS). Here in this study, we fabricated a novel aggregation-induced emission (AIE)-active polymer capable of self-assembling into ultrasmall nanoparticles (∼20 nm) with D-alpha Tocopheryl Polyethylene Glycol Succinate (TPGS), for dual-encapsulating of doxorubicin (Dox) and sulforaphane (SFN) (AT/Dox/SFN). It revealed that redox homeostasis modulation of MDR cells (MCF-7/Adr) using AT/Dox/SFN can trigger mitochondria damage and ATP deficiency, which reverse the MDR phenotype of MCF-7/Adr cells to afford enhanced cellular uptake of both drug and DDS in a positive-feedback manner. The enhanced cellular drug accumulation further initiates the “neighboring effect” for improved drug penetration. Using this strategy, the growth of in vivo MCF-7/Adr tumors can be effectively inhibited at a low dosage (1/5) of doxorubicin (Dox) as compared to free Dox. In summary, we offer a new approach to overcome both the intracellular and extracellular barriers of drug-resistant cancers and elucidate the potential action mechanisms, which are beneficial for better cancer management. Redox homeostasis modulation in MDR cancer cell results in positive-feedback drug accumulation and enhanced drug penetration. Mitochondria damage and neighboring effect is responsible for MDR reversal and enhanced drug penetration, respectively. AT/Dox/SFN effectively inhibits in vivo MCF-7/Adr tumors at a low dosage (1/5) of doxorubicin (Dox) as compared to free Dox.
Collapse
Affiliation(s)
- Shaoqing Chen
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, China
| | - Li Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Yuting Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China
- Corresponding author. Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, China
- Corresponding author.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
- Corresponding author.
| |
Collapse
|
6
|
Sajeev A, Hegde M, Daimary UD, Kumar A, Girisa S, Sethi G, Kunnumakkara AB. Modulation of diverse oncogenic signaling pathways by oroxylin A: An important strategy for both cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154369. [PMID: 35985182 DOI: 10.1016/j.phymed.2022.154369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Regardless of major advances in diagnosis, prevention and treatment strategies, cancer is still a foreboding cause due to factors like chemoresistance, radioresistance, adverse side effects and cancer recurrence. Therefore, continuous development of unconventional approaches is a prerequisite to overcome foregoing glitches. Natural products have found their way into treatment of serious health conditions, including cancer since ancient times. The compound oroxylin A (OA) is one among those with enormous potential against different malignancies. It is a flavonoid obtained from the several plants such as Oroxylum indicum, Scutellaria baicalensis and S. lateriflora, Anchietea pyrifolia, and Aster himalaicus. PURPOSE The main purpose of this study is to comprehensively elucidate the anticancerous effects of OA against various malignancies and unravel their chemosensitization and radiosensitization potential. Pharmacokinetic and pharmacodynamic studies of OA have also been investigated. METHOD The literature on antineoplastic effects of OA was searched in PubMed and Scopus, including in vitro and in vivo studies and is summarized based on a systematic review protocol prepared according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The term "oroxylin A" was used in combination with "cancer" and all the title, abstracts and keywords appeared were considered. RESULTS In Scopus, a total of 157 articles appeared out of which 103 articles that did not meet the eligibility criteria were eliminated and 54 were critically evaluated. In PubMed, from the 85 results obtained, 26 articles were eliminated and 59 were included in the preparation of this review. Mounting number of studies have illustrated the anticancer effects of OA, and its mechanism of action. CONCLUSION OA is a promising natural flavonoid possessing wide range of pleiotropic properties and is a potential anticancer agent. It has a great potential in the treatment of multiple cancers including brain, breast, cervical, colon, esophageal, gall bladder, gastric, hematological, liver, lung, oral, ovarian, pancreatic and skin. However, lack of pharmacokinetic studies, toxicity assessments, and dose standardization studies and adverse effects limit the optimization of this compound as a therapeutic agent.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| |
Collapse
|
7
|
Pei Y, Wang Z, Wang C. Recent Progress in Polymeric AIE-Active Drug Delivery Systems: Design and Application. Mol Pharm 2021; 18:3951-3965. [PMID: 34585933 DOI: 10.1021/acs.molpharmaceut.1c00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aggregation-induced emission (AIE) provides a new opportunity to overcome the drawbacks of traditional aggregation-induced quenching of chromophores. The applications of AIE-active fluorophores have spread across various fields. In particular, the employment of AIEgens in drug delivery systems (DDSs) can achieve imaging-guided therapy and pharmacodynamic monitoring. As a result, polymeric AIE-active DDSs are attracting increasing attention due to their obvious advantages, including easy fabrication and tunable optical properties by molecular design. Additionally, the design of polymeric AIE-active DDSs is a promising method for cancer therapy, antibacterial treatment, and pharmacodynamic monitoring, which indeed helps improve the effectiveness of related disease treatments and confirms its potential social importance. Here, we summarize the current available polymeric AIE-active DDSs from design to applications. In the design section, we introduce synthetic strategies and structures of AIE-active polymers, as well as responsive strategies for specific drug delivery. In the application section, typical polymeric AIE-active DDSs used for cancer therapy, bacterial treatment, and drug delivery monitoring are summarized with selected examples to elaborate on their wide applications.
Collapse
Affiliation(s)
- Yang Pei
- School of History, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Cheng Wang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, People's Republic of China.,School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
8
|
Wang C, Wang Z, Chen S, Cui P, Qiu L, Zhou S, Jiang H, Jiang P, Wang J. Modulation of Aggregation-Caused Quenching to Aggregation-Induced Emission: Finding a Biocompatible Polymeric Theranostics Platform for Cancer Therapy. Macromol Rapid Commun 2021; 42:e2100264. [PMID: 34347315 DOI: 10.1002/marc.202100264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/05/2021] [Indexed: 01/18/2023]
Abstract
Dual intramolecular FRET polymers are synthesized via Suzuki coupling and their luminescence characteristics from aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) is modulated conveniently by adjusting the charged ratios. The finally obtained AIE polymer is further employed to construct doxorubicin loaded nanoparticles as a promising theranostics platform for cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Shaoqing Chen
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Hua Jiang
- Department of Oncology, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| |
Collapse
|