1
|
Jin Y, Chen J, Xie W, Zhang J, Yan J, Chen C, Lin J, Cai Z, Lin Z. Gold-Modified Covalent Organic Frameworks-Assisted Laser Desorption/Ionization Mass Spectrometry for Analysis of Metabolites Induced by Triclosan Exposure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7056-7065. [PMID: 39818740 DOI: 10.1021/acsami.4c16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) holds great promise for the rapid and sensitive detection of biomolecules, but its precise detection of small molecule metabolites is hindered by severe background interference from the organic matrix in the low molecular weight range. To address this issue, nanomaterials have commonly been utilized as substrates in LDI-MS. Among them, covalent organic frameworks (COFs), known for their unique optical absorption and structural properties, have garnered significant attention. Despite these advantages, their low ionization efficiency remains a challenge. Herein, a composite material of COF-S@Au nanoparticles (NPs), by incorporating Au NPs into a sulfur-functionalized COF (COF-S) through postsynthetic modification, was designed and adopted as substrates. This hybrid material leverages the synergistic effects of COF-S and Au NPs to improve the desorption/ionization efficiency and minimize background interference. The COF-S@Au NPs demonstrated a 5-16-fold improvement in MS signals of small biomolecules along with a clean background and excellent resistance to salt and protein interference. Their corresponding limits of detection (LODs) were achieved at ∼pmol. Furthermore, the COF-S@Au NPs were applied to analyze metabolites in a triclosan (TCS)-exposed mouse model, successfully identifying 10 differential metabolites associated with TCS toxicity. This work provides a foundation for developing advanced LDI-MS materials for high-performance metabolic analysis and offers valuable insights into TCS metabolic toxicity with potential applications in environmental toxicology.
Collapse
Affiliation(s)
- Yingxue Jin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiajing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinni Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingjing Yan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiashi Lin
- College of Physical Education, Jimei University, Xiamen, Fujian 361021, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR 999077, P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
2
|
Liu X, Ding W, Feng T, Yang C, Li J, Liu P, Lei Z. Tailoring the covalent organic frameworks based polymer materials for solar-driven atmospheric water harvesting. J Colloid Interface Sci 2024; 673:817-825. [PMID: 38906003 DOI: 10.1016/j.jcis.2024.06.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Atmospheric water harvesting through reticular materials is an innovation that has the potential to change the world. Here, this study offers a technique for creating a solar-powered hygroscopic polymer material for atmospheric water harvesting with the reticular materials. The results show that the porous hygroscopic polymer materials can achieve high performance with high vapor capture (up to ac. 28.8-49.7 mg/g at 28-38 %RH and 25 ℃), rapid photothermal conversion efficiency (up to 32.2 ℃ within 15 min under 1000 W/m-2 light at 25 ℃), a low desorption temperature (lower than 40 ℃), and an effective water release rate. Besides, the material also has excellent water-retention properties, which can effectively store desorbed liquid water in polymer networks for use by vegetation during water demand periods. The strategy opens new avenues for atmospheric water-harvesting materials, which will hopefully solve the global crisis of freshwater shortages.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenbin Ding
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tao Feng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cailing Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jing Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengbo Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Luo Y, Ma S, Zhang J, Zhang Q, Zhang Y, Mao J, Yuan H, Ouyang G, Zhang S, Zhao W. Developing a novel strategy for fabricating matrix film to assess the distribution of potassium perfluorooctanic sulfonate by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chim Acta 2024; 1303:342528. [PMID: 38609267 DOI: 10.1016/j.aca.2024.342528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Matrix deposition plays a critical role in image quality of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To improve the ionization efficiency and overcome the limitation of traditional matrix deposition methods in the face of difficult-to-sublimate or difficult-to-dissolve matrix, covalent organic frameworks (COFs) named COF-DhaTab was successfully synthesized and firstly used as matrix film. It was fabricated by imprinting of sieved COF-DhaTab powder on the surface of a double-sided adhesive tape. Outstanding reproducibility and uniformity of COF-DhaTab film were demonstrated by relative standard deviation (RSD) within 8.37% and 7.71% from dot-to-dot and plate-to-plate, respectively. With the introduction of double-sided adhesive tape, water contact angle (WCA) of COF-DhaTab film increased from 55° to 141°, resulting in significant suppression of analyte diffusion. Moreover, the intensity of potassium perfluorooctanic sulfonate (PFOS, C8F17SO3-, m/z 498.93) was 9.3 × 105, more than six hundred times higher than that using DHB matrix. This enhancement was attributed to the rough surface and multiple branches of the synthesized COF-DhaTab. To verify the ability of COF-DhaTab film as substrate, the spatial distribution of PFOS in zebrafish, rat liver and kidney tissues was explored. Superior imaging capability was displayed with high-spatial resolution and reliable location distribution. These results not only demonstrate the outstanding ability of COF-DhaTab as matrix for MALDI-MS and MALDI-MSI, but also provide a facile approach for fabrication of novel matrix films for MALDI-MSI.
Collapse
Affiliation(s)
- Yake Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shanshan Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianxun Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Qidong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Mao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Yang C, Yu H, Li W, Lin H, Wu H, Deng C. High-Throughput Metabolic Pattern Screening Strategy for Early Colorectal and Gastric Cancers Based on Covalent Organic Frameworks-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2024; 96:6264-6274. [PMID: 38600676 DOI: 10.1021/acs.analchem.3c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Precise early diagnosis and staging are conducive to improving the prognosis of colorectal cancer (CRC) and gastric cancer (GC) patients. However, due to intrusive inspections and limited sensitivity, the prevailing diagnostic methods impede precisely large-scale screening. In this work, we reported a high-throughput serum metabolic patterns (SMP) screening strategy based on covalent organic frameworks-assisted laser desorption/ionization mass spectrometry (hf-COFsLDI-MS) for early diagnosis and staging of CRC and GC. Notably, 473 high-quality SMP were extracted without any tedious sample pretreatment and coupled with multiple machine learning algorithms; the area under the curve (AUC) value is 0.938 with 96.9% sensitivity for early CRC diagnosis, and the AUC value is 0.974 with 100% sensitivity for early GC diagnosis. Besides, the discrimination of CRC and GC is accomplished with an AUC value of 0.966 for the validation set. Also, the screened-out features were identified by MS/MS experiments, and 8 metabolites were identified as the biomarkers for CRC and GC. Finally, the corresponding disordered metabolic pathways were revealed, and the staging of CRC and GC was completed. This work provides an alternative high-throughput screening strategy for CRC and GC and highlights the potential of metabolic molecular diagnosis in clinical applications.
Collapse
Affiliation(s)
- Chenjie Yang
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hailong Yu
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Weihong Li
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hairu Lin
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Huang X, Wang B, Zhai R, Ding CF, Fang X, Dai X, Yan Y. Boric acids decorated polymers with Au nanoparticle anchor assisted laser desorption/ionization for qualitive and quantitative analysis of hydroxytyrosol in red wines. Food Chem 2024; 437:137873. [PMID: 37918150 DOI: 10.1016/j.foodchem.2023.137873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Hydroxytyrosol possesses a variety of biological and pharmacological activities that are beneficial to human health. However, the methodologies for its detection always suffered from problems. In this work, the gold nanoparticle modified polymer decorated with boric acids (pMBA/VPBA@Au) was synthesized and used both as the adsorbent and matrix to enrich and ionize small molecule substances through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The pMBA/VPBA@Au displayed a low detection limit (8 × 10-6 M) and high selectivity (1:100) for the enrichment of hydroxytyrosol, and the linear correlation curve between the concentration of hydroxytyrosol and the intensity of MS had a good correlation (10-4-10-2 M, R2 = 0.997). Additionally, the pMBA/VPBA@Au was used to quantify hydroxytyrosol in red wines, and the contents were 0.053-0.094 μg/mL. In general, a simple and novel method for the detection of hydroxytyrosol by SALDI-MS using boric acid functionalized polymer was developed for the first time, showing a good practical application value.
Collapse
Affiliation(s)
- Xiaohui Huang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Du X, Yuan L, Gao S, Tang Y, Wang Z, Zhao CQ, Qiao L. Research progress on nanomaterial-based matrices for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. J Chromatogr A 2023; 1712:464493. [PMID: 37944434 DOI: 10.1016/j.chroma.2023.464493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a novel soft ionization bio-mass spectrometry technology emerging in the 1980s, which can realize rapid detection of non-volatile, highly polar, and thermally unstable macromolecules. However, the analysis of small molecular compounds has been a major problem for MALDI-TOF MS all the time. In the MALDI analysis process based on traditional matrices, large numbers of interference peaks in the low molecular weight area and "sweet spots" phenomenon are produced, so the detection method needs to be further optimized. The promotion of matrix means the improvement of MALDI performance. In recent years, many new nanomaterial-based matrices have been successfully applied to the analysis of small molecular compounds, which makes MALDI applicable to a wider range of detection and useful in more fields such as pharmacy and environmental science. In this paper, the newly developed MALDI matrix categories in recent years are reviewed initially. Meanwhile, the potential applications, advantages and disadvantages of various matrices are analyzed. Finally, the future development prospects of nanomaterial-based matrices are also prospected.
Collapse
Affiliation(s)
- Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Lianghao Yuan
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yuanting Tang
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhiyi Wang
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
7
|
Sun S, Wang L, Wang J, Lv W, Yu Q, Pei D, Han S, Li X, Wang M, Liu S, Quan X, Lv M. Homochiral organic molecular cage RCC3-R-modified silica as a new multimodal and multifunctional stationary phase for high-performance liquid chromatography. J Sep Sci 2023; 46:e2200935. [PMID: 37349859 DOI: 10.1002/jssc.202200935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
In this work, homochiral reduced imine cage was covalently bonded to the surface of the silica to prepare a novel high-performance liquid chromatography stationary phase, which was applied for the multiple separation modes such as normal phase, reversed-phase, ion exchange, and hydrophilic interaction chromatography. The successful preparation of the homochiral reduced imine cage bonded silica stationary phase was confirmed by performing a series of methods including X-ray photoelectron spectroscopy, thermogravimetric analysis, and infrared spectroscopy. From the extracted results of the chiral resolution in normal phase and reversed-phase modes, it was demonstrated that seven chiral compounds were successfully separated, among which the resolution of 1-phenylethanol reached the value of 3.97. Moreover, the multifunctional chromatographic performance of the new molecular cage stationary phase was systematically investigated in the modes of reversed-phase, ion exchange, and hydrophilic interaction chromatography for the separation and analysis of a total of 59 compounds in eight classes. This work demonstrated that the homochiral reduced imine cage not only achieved multiseparation modes and multiseparation functions performance with high stability, but also expanded the application of the organic molecular cage in the field of liquid chromatography.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Litao Wang
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Jiasheng Wang
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Wenjing Lv
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Qinghua Yu
- School of Pharmacy, Jining Medical University, Jining, P. R. China
- School of Pharmacy, Weifang Medical University, Weifang, P. R. China
| | - Dong Pei
- Qingdao Center of Resource Chemistry & New Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Siqi Han
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Xingyu Li
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Miao Wang
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Sheng Liu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, P. R. China
| | - Xiangao Quan
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Mei Lv
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| |
Collapse
|
8
|
Liu XP, Sun WQ, Zhao MG, Zhang XJ, Liu LH, Chen CP. Fluoro-functionalized ionic covalent organic frameworks (F-iCOFs) for highly selective enrichment and sensitive determination of perfluorinated sulfonates by MALDI-MS. Mikrochim Acta 2022; 189:442. [DOI: 10.1007/s00604-022-05542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
|
9
|
Zheng R, Yan W, Xia Y. Highly water-dispersible hydroxyl functionalized covalent organic frameworks as matrix for enhanced MALDI-TOF MS identification and quantification of quaternary ammonium salts in water and fruits. Anal Chim Acta 2022; 1227:340269. [DOI: 10.1016/j.aca.2022.340269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/01/2022]
|
10
|
Li F, Wang M, Zhou J, Yang M, Wang T. Nanocomposites of boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymers as a novel desorption/ionization matrix for the capture and direct detection of cis-diol-flavonoid compounds coupled with MALDI-TOF-MS. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128055. [PMID: 35236020 DOI: 10.1016/j.jhazmat.2021.128055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Novel boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymer (Fe3O4@MWCNTs@ε-PL@BA) nanocomposites were fabricated and applied as the desorption/ionization matrix for the MALDI-TOF-MS determination of low molecular weight flavonoids. The prepared nanocomposite was systematically characterized by various techniques. Compared to the traditional organic matrix, the proposed Fe3O4@MWCNTs@ε-PL@BA matrix has excellent ionization efficiency and low-background noise interference due to the MWCNTs unique electron-phonon interaction and the high introduction density of boronic acid functional groups. Good sensitivity and ultra-high salt tolerance of the Fe3O4@MWCNTs@ε-PL@BA-assisted MALDI-TOF-MS were permitted for the determination and quantification of flavonoids in actual samples. Noticeably, the limits of detection (LODs) for the target flavonoids were in the range 17-33 nM. The relative standard deviations (RSDs) of spot-to-spot and sample-to-sample (n = 10) were ≤ 9.8% and ≤ 10.1%, respectively. Furthermore, the wide linear ranges (0.1 - 500 µg/mL) and satisfactory calibration plot coefficients (R2 > 0.99) of flavonoids were achieved by MALDI-TOF-MS with the Fe3O4@MWCNTs@ε-PL@BA matrix. Good recoveries (92-105.5%) were achieved for the target flavonoids in practical food samples. Hence, the prepared Fe3O4@MWCNTs@ε-PL@BA nanocomposites have applications in the selective and efficient capture of target flavonoids active biomolecules coupled with MALDI-TOF-MS determination in actual samples.
Collapse
Affiliation(s)
- FuKai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - MengRui Yang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - TongTong Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| |
Collapse
|
11
|
Huang H, Ouyang D, Lin ZA. Recent Advances in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry and Its Imaging for Small Molecules. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Ding Y, Pei C, Shu W, Wan J. Inorganic Matrices Assisted Laser Desorption/Ionization Mass Spectrometry for Metabolic Analysis in Bio-fluids. Chem Asian J 2021; 17:e202101310. [PMID: 34964274 DOI: 10.1002/asia.202101310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Metabolic analysis in bio-fluids interprets the end products in the bio-process, emerging as an irreplaceable disease diagnosis and monitoring platform. Laser desorption/ionization mass spectrometry (LDI MS) based metabolic analysis exhibits great potential for clinical applications in terms of high throughput, rapid signal readout, and minimal sample preparation. There are two essential elements to construct the LDI MS-based metabolic analysis: 1) well-designed nanomaterials as matrices; 2) machine learning algorithms for data analysis. This review highlights the development of various inorganic matrices to comprehend the advantages of LDI MS in metabolite detection and the recent diagnostic applications based on target metabolite detection and untargeted metabolic fingerprints in biological fluids.
Collapse
Affiliation(s)
- Yajie Ding
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Congcong Pei
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Weikang Shu
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Jingjing Wan
- East China Normal University, School of Chemistry and Molecular Engineering, No.500, Dongchuan Road, Minghang District, 200241, Shanghai, CHINA
| |
Collapse
|
13
|
Ouyang D, Zheng Q, Huang H, Cai Z, Lin Z. Covalent Organic Framework Nanofilm-Based Laser Desorption/Ionization Mass Spectrometry for 5-Fluorouracil Analysis and Tissue Imaging. Anal Chem 2021; 93:15573-15578. [PMID: 34784186 DOI: 10.1021/acs.analchem.1c01743] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become a ubiquitous and effective tool for macromolecules, direct analysis of small molecules by MALDI-MS using conventional organic matrices poses a challenge. Herein, a large-area, uniform, and stable covalent organic framework (COF) nanofilm prepared directly on indium-tin oxide (ITO) glass was first introduced as a substrate for LDI-MS, which showed enhanced sensitivity, no background interference, and high reproducibility in the analysis of diverse small molecules. Taking into account all these merits, an attractive approach of COF nanofilm-based LDI-MS was developed to quantitatively evaluate the pharmacokinetics of 5-fluorouracil (5-FU) in mouse plasma. A good linear relationship (10-20,000 ng/mL) and a low limit of detection (LOD) for 5-FU (∼100 pg/mL) were achieved. In view of the fact that the COF nanofilm was uniform and without the requirement of additional matrix spraying, it was further extended for LDI-MS imaging (LDI-MSI) to visualize the spatial distribution of 5-FU in mouse liver at different interval times after intravenous and intragastric administrations. The results indicated that the decay of 5-FU in mouse liver obtained with the COF nanofilm-based LDI-MSI was consistent with the tendency of 5-FU pharmacokinetics. This work not only offers an alternative solution for LDI-MS/MSI analysis of small molecules but also extends the application fields of COF nanofilm in MS research.
Collapse
Affiliation(s)
- Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiong Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
14
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Kulkarni AS, Huang L, Qian K. Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 2021; 9:3622-3639. [PMID: 33871513 DOI: 10.1039/d1tb00289a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low molecular weight compounds play an important role in encoding the current physiological state of an individual. Laser desorption/ionization mass spectrometry (LDI MS) offers high sensitivity with low cost for molecular detection, but it is not able to cover small molecules due to the drawbacks of the conventional matrix. Advanced materials are better alternatives, showing little background interference and high LDI efficiency. Herein, we first classify the current materials with a summary of compositions and structures. Matrix preparation protocols are then reviewed, to enhance the selectivity and reproducibility of MS data better. Finally, we highlight the biomedical applications of material-assisted LDI MS, at the tissue, bio-fluid, and cellular levels. We foresee that the advanced materials will bring far-reaching implications in LDI MS towards real-case applications, especially in clinical settings.
Collapse
Affiliation(s)
- Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
16
|
Sun W, Liu Y, Zhou W, Li Z, Chen Z. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis. Talanta 2021; 230:122330. [PMID: 33934787 DOI: 10.1016/j.talanta.2021.122330] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Abstract
Column technology is an important part in capillary electrochromatographic science. Developing novel stationary phase with high separation efficiency and high loading capacity is an essential work. In this work, a novel spherical vinyl-functionalized covalent-organic framework (COF-V) was synthesized at room temperature and firstly employed as stationary phase for CEC-MS analysis. The COF-V based CEC column was characterized by scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The results proved the successful modification of COF-V. The COF-V based column possesses the advantages like strong electroosmotic flow, high separation efficiency and high loading capacity. The CEC column showed powerful separation selectivity to several kinds of compounds, and the highest column efficiency (theoretical plates, N) was over 1.4 × 105 plates·m-1 for methylbenzene. Besides, the COF-V modified column exhibited excellent repeatability and stability. The relative standard deviations (RSDs) of retention times for intra-day (n = 5), inter-day (n = 3) runs and column-to-column (n = 3) were all less than 2.1%. Hence, the COF-V modified column was successfully applied in CEC-MS for determination of antiepileptic drug, triazine herbicides and active ingredients in traditional Chinese medicine.
Collapse
Affiliation(s)
- Wenqi Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yikun Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Wei Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zhentao Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
17
|
Tan W, Xu X, Lv Y, Lei W, Hu K, Ye F, Zhao S. Sulfonic acid functionalized hierarchical porous covalent organic frameworks as a SALDI-TOF MS matrix for effective extraction and detection of paraquat and diquat. J Colloid Interface Sci 2021; 603:172-181. [PMID: 34186396 DOI: 10.1016/j.jcis.2021.06.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 11/15/2022]
Abstract
Design and construction of a matrix with specific adsorption on the target compounds can effectively reduce the detection limit of surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) analysis. Sulfonic acid functionalized hierarchical porous covalent organic frameworks (H-COF-SO3H) was synthesized by defect-structure and post-modification method, and then used as matrix and adsorbent for the determination of quaternary ammonium herbicides paraquat (PQ) and diquat (DQ). N2 adsorption-desorption experiments confirmed that H-COF-SO3H possesses hierarchical porosity with pore widths concentrated at 1.3,1.5, and 2.8 nm. The strong UV absorption at 200-450 nm and good thermal stability made H-COF-SO3H being a promising matrix without background interference. H-COF-SO3H can efficiently enrich PQ and DQ via electrostatic attraction, and the key role of -SO3H group on specific adsorption was confirmed by density functional theory (DFT) calculations. The limits of detection (LODs) for PQ and DQ with H-COF-SO3H enrichment were 0.5 and 0.1 ng·mL-1, respectively, which were 20 and 60 times higher than those without H-COF-SO3H enrichment, respectively. The spiked recoveries of PQ and DQ for the three food samples were 92.0-113.2% and 80.1-102.6% with RSDs of 2.2-9.2% and 2.0-8.7%, respectively. This work provides an analyte-oriented approach for fabricating SALDI-TOF MS matrix.
Collapse
Affiliation(s)
- Wei Tan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China; Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, PR China
| | - Xianyan Xu
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, PR China.
| | - Yuanxia Lv
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Wenjuan Lei
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Kun Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| |
Collapse
|
18
|
Gu H, Ma K, Zhao W, Qiu L, Xu W. A general purpose MALDI matrix for the analyses of small organic, peptide and protein molecules. Analyst 2021; 146:4080-4086. [PMID: 34052846 DOI: 10.1039/d1an00474c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been widely applied for the analysis of large biomolecules. The emergence of inorganic material substrates and new organic matrices extends the use of MALDI MS for small molecule analyses. However, there are usually preferred matrices for different types of analytes. Here, an organic compound, 4-hydroxy-3-nitrobenzonitrile, was found to be a general purpose matrix for the analyses of small organic, peptide and protein molecules. In particular, 4-hydroxy-3-nitrobenzonitrile has a strong UV absorption property, and it provides a clean background in the low mass range. Its analytical performances as a UV-laser matrix were demonstrated for different types of analytes, including organic drugs, peptides, proteins, mouse brain tissue and bacteria. Compared with commercial matrices, this new matrix has better performances when analyzing small molecules, such as drugs, peptides and lipids, while it has similar performances when analyzing proteins.
Collapse
Affiliation(s)
- Hao Gu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Kang Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Weiqian Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Lirong Qiu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
19
|
Core-shell MOF@COFs used as an adsorbent and matrix for the detection of nonsteroidal anti-inflammatory drugs by MALDI-TOF MS. Mikrochim Acta 2021; 188:179. [PMID: 33914148 DOI: 10.1007/s00604-021-04832-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
A core-shell material (UiO@TapbTp) has been developed as an adsorbent and matrix to detect nonsteroidal anti-inflammatory drugs (NSAIDS) by matrix laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in complex samples. The hybrid material is prepared by growing covalent organic framework (COF, TapbTp) layers in situ on an amino-modified metal-organic framework (MOF, UiO-66-NH2). The combination of the MOF and COF overcomes their individual shortcomings and integrates both of their advantages. Compared with the bare COF and MOF, the core-shell composite exhibits improved enrichment ability and matrix performance. With the help of pre-enrichment under optimized conditions, the limits of detection (LODs) for ketoprofen, naproxen, and aspirin are reduced by nearly 1000 times, with values of 0.001 mg L-1, 0.010 mg L-1, and 0.001 mg L-1, respectively, and the relative standard deviations (RSDs) are all below 12.35%. The good recoveries (84.8-118%) in (spiked) saliva and environmental water sample further verify the applicability of the method in complex samples.
Collapse
|
20
|
Wang N, Wang F, Pan F, Yu S, Pan D. Highly Efficient Silver Catalyst Supported by a Spherical Covalent Organic Framework for the Continuous Reduction of 4-Nitrophenol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3209-3220. [PMID: 33404207 DOI: 10.1021/acsami.0c20444] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing new materials and novel technologies for the highly efficient treatment of toxic organic pollutants is highly desirable. Chemical reduction based on heterogeneous substrate/noble metal catalysts and the reducing agent NaBH4 has become an effective method in recent years. Here, a spherical covalent organic framework (SCOF) was designed to provide basic sites for Ag ions, by which small Ag NPs were immobilized on the SCOF to form Ag NPs@SCOF microspheres. The prepared microspheres exhibited a high catalytic reduction ability toward 4-nitrophenol (4-NP). An optimized permeation flux of 2000 L m-2 h-1 (LMH) and a more than 99% 4-NP reduction efficiency were obtained with flow-through experiments, which are far better than the reported results (below 200 LMH). Moreover, the microspheres could maintain stable catalytic performance under a continuous flow-through process. Our work provides an efficient material and technology that can be applied to easily treat toxic organic pollutants.
Collapse
Affiliation(s)
- Ning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fushuai Wang
- Yantai University, Yantai, Shandong 264005, P. R. China
| | - Fei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dawei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
21
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
22
|
Luo K, Yang B, Guo W, Sun Q, Dan O, Lin Z, Cai Z. Surface-enhanced laser desorption/ionization mass spectrometry for rapid analysis of organic environmental pollutants by using polydopamine nanospheres as a substrate. Analyst 2020; 145:5664-5669. [PMID: 32643716 DOI: 10.1039/d0an00895h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polydopamine nanospheres (PDA) were designed to serve as a new substrate for surface-enhanced desorption/ionization mass spectrometry (SELDI-MS). Compared with conventional organic matrices, the PDA substrate showed superior LDI performance for analyzing a wide variety of environmental pollutants, including polycyclic aromatic hydrocarbons, bisphenols, benzophenones, sulfonamides, perfluorinated compounds and estrogens. Benzoapyrene was used to evaluate the ability of quantitative analysis and its corresponding limit of detection (LOD) of as low as 0.1 ng was achieved. High sensitivity and good reproducibility of PDA-based SELDI-MS allowed us to determine ultratrace PAHs in airborne particulate matters (PM2.5), and the corresponding concentration of BaP in different PM2.5 were 5.32, 8.97 and 9.79 ng m-3. Significantly, PDA exhibits the characteristics of simple synthesis, low cost, non-toxicity and less matrix interference, which provides the possibility for the sensitive analysis of organic small molecule pollutants at low concentrations in complex environmental samples.
Collapse
Affiliation(s)
- Kailong Luo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | | | | | | | | | | | | |
Collapse
|