1
|
Jin L, Wang J, Wu L. ELECTROCHEMICAL BIOSENSOR FOR ERYTHROPOIETIN DETECTION IN ATHLETES. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Introduction: The cytokine erythropoietin (EPO) is a crucial hormone for producing RBCs, which carry oxygenated blood to the rest of the body. Objective: This paper aimed to create an electrochemical detection based on Fe2O3-NiO nanoparticles and graphene oxide to measure EPO levels in athletes’ blood. Methods: On a glassy carbon electrode, Fe2O3-NiO@GO was synthesized using the electrochemical deposition method. Results: The Fe2O3-NiO@GO/GCE was validated by structural characterizations using scanning electron microscopy (SEM). The Fe2O3-NiO@GO/GCE was found to be a suitable and stable erythropoietin biosensor with a linear range of 0-500 ng/l and a detection limit of 0.03ng/l in electrochemical tests using the DPV technique. Fe2O3-NiO@GO/erythropoietin was investigated as a biosensor for erythropoietin in athlete's plasma. Conclusion: The results showed that the values obtained for recovery (94.56% to 98.40) and RSD (2.01% to 3.22%) were acceptable, indicating that the suggested technique can be used as a practical erythropoietin biosensor in blood samples. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
Affiliation(s)
| | - Juan Wang
- Kaifeng Vocational College of Culture and Arts, China
| | | |
Collapse
|
2
|
Peng C, Ji H, Wang Z. An Electrochemical Biosensor Based on Gold Nanoparticles/Carbon Nanotubes Hybrid for Determination of recombinant human erythropoietin in human blood plasma. INT J ELECTROCHEM SC 2022; 17:221127. [DOI: 10.20964/2022.11.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Nihal S, Guppy-Coles K, Gholami MD, Punyadeera C, Izake EL. Towards Label-free detection of viral disease agents through their cell surface proteins: Rapid screening SARS-CoV-2 in biological specimens. SLAS DISCOVERY 2022; 27:331-336. [PMID: 35667647 PMCID: PMC9166287 DOI: 10.1016/j.slasd.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Current methods for the screening of viral infections in clinical settings, such as reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), are expensive, time-consuming, require trained personnel and sophisticated instruments. Therefore, novel sensors that can save time and cost are required specially in remote areas and developing countries that may lack the advanced scientific infrastructure for this task. In this work, we present a sensitive, and highly specific biosensing approach for the detection of harmful viruses that have cysteine residues within the structure of their cell surface proteins. We utilized new method for the rapid screening of SARS-CoV-2 virus in biological fluids through its S1 protein by surface enhanced Raman spectroscopy (SERS). The protein is captured from aqueous solutions and biological specimens using a target-specific extractor substrate. The structure of the purified protein is then modified to convert it into a bio-thiol by breaking the disulfide bonds and freeing up the sulfhydryl (SH) groups of the cysteine residues. The formed biothiol chemisorbs favourably onto a highly sensitive plasmonic sensor and probed by a handheld Raman device in few seconds. The new method was used to screen the S1 protein in aqueous medium, spiked human blood plasma, mucus, and saliva samples down to 150 fg/L. The label-free SERS biosensing method has strong potential for the fingerprint identification many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method can be applied at points of care (POC) in remote areas and developing countries lacking sophisticated scientific infrastructure.
Collapse
|
4
|
Gholami MD, Guppy-Coles K, Nihal S, Langguth D, Sonar P, Ayoko GA, Punyadeera C, Izake EL. A paper-based optical sensor for the screening of viruses through the cysteine residues of their surface proteins: A proof of concept on the detection of coronavirus infection. Talanta 2022; 248:123630. [PMID: 35660992 PMCID: PMC9153203 DOI: 10.1016/j.talanta.2022.123630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/29/2022] [Indexed: 12/27/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health. Current methods such as reverse transcription polymerase chain reaction (qRT-PCR) are complex, expensive, and time-consuming. Rapid, and simple screening methods for the detection of SARS-CoV-2 are critically required to fight the current pandemic. In this work we present a proof of concept for, a simple optical sensing method for the screening of SARS-CoV-2 through its spike protein subunit S1. The method utilizes a target-specific extractor chip to bind the protein from the biological specimens. The disulfide bonds of the protein are then reduced into a biothiol with sulfhydryl (SH) groups that react with a blue-colored benzothiazole azo dye-Hg complex (BAN-Hg) and causes the spontaneous change of its blue color to pink which is observable by the naked eye. A linear relationship between the intensity of the pink color and the logarithm of reduced S1 protein concentration was found within the working range 130 ng.mL−1-1.3 pg mL−1. The lowest limit of detection (LOD) of the assay was 130 fg mL−1. A paper based optical sensor was fabricated by loading the BAN-Hg sensor onto filter paper and used to screen the S1 protein in spiked saliva and patients’ nasopharyngeal swabs. The results obtained by the paper sensor corroborated with those obtained by qRT-PCR. The new paper-based sensing method can be extended to the screening of many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method has strong potential for screening viruses at pathology labs and in remote areas that lacks advanced scientific infrastructure. Further clinical studies are warranted to validate the new sensing method.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Kristyan Guppy-Coles
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Serena Nihal
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Daman Langguth
- Department of Clinical Immunology and Allergy, Wesley Hospital, Brisbane, QLD, 4066, Australia; Department of Immunology, Sullivan Nicolaides Pathology, QLD, 4006, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Biomedical Technology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Godwin A Ayoko
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Chamindie Punyadeera
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, 4111, Australia; Menzies Health Institute Queensland (MIHQ), Griffith University, Brisbane, QLD, 4111, Australia
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; Centre for Biomedical Technology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
5
|
Nadim AH, Abd El-Aal MA, Al-Ghobashy MA, El-Saharty YS. Optimization of polydopamine imprinted polymer for label free sensitive potentiometric determination of proteins: Application to recombinant human erythropoietin sensing in different matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Nadim AH, Abd El-Aal MA, Al-Ghobashy MA, El-Saharty YS. Facile imprinted polymer for label-free highly selective potentiometric sensing of proteins: case of recombinant human erythropoietin. Anal Bioanal Chem 2021; 413:3611-3623. [PMID: 33866391 DOI: 10.1007/s00216-021-03325-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
In the current study, a molecularly imprinted polymer (MIP)-based potentiometric sensor was fabricated for a label-free determination of recombinant human erythropoietin (rhEPO). The MIP sensor was operated under zero current conditions using tetra-butyl ammonium bromide as a marker ion. A highly ordered rhEPO surface imprinted layer was prepared using 3-aminopropyl triethoxysilane and tetraethoxysilane as a monomer and cross-linker, respectively, under mild reaction conditions. A two-fold increase in the signal output was obtained by polymeric surface minimization (0.5 mm) that allowed more pronounced molecular recognition (imprinting factor = 20.1). The proportion of cross-reactivity was examined using different interfering biomolecules. Results confirmed sensor specificity for both structurally related and unrelated proteins. An ~40% decrease in the response was obtained for rhEPO-β compared to rhEPO-α. The imprinted polymeric surface was evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. Under the optimal measurement conditions, a linear range of 10.00-1000.00 ng mL-1 (10-10 - 10-8 M) was obtained. The sensor was employed for the determination of rhEPO in different biopharmaceutical formulations. Results were validated against standard immunoassay. Spiked human serum samples were analyzed and the assay was validated. The presence of non-specific proteins did not significantly affect (~8%) the results of our assay. A concentration-dependent linear response was produced in an identical range with detection limit as low as 6.50 ng mL-1 (2.14 × 10-10 M). The facile fabricated MIP sensor offers a cost-effective, portable, and easy to use alternative for biosimilarity assessment and clinical application.
Collapse
Affiliation(s)
- Ahmed H Nadim
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - May A Abd El-Aal
- National Organization for Research and Control of Biologicals, 51 Wezaret El-Zeraa St., Dokki, Giza, 354, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt. .,Bioanalysis Research Group, School of Pharmacy, New Giza University, Km 22 Cairo-Alex road, Giza, 12563, Egypt.
| | - Yasser S El-Saharty
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|