1
|
Zhuang L, Song C, Sun L, Xie H, Wang L, Liu Q, Shi H, Yang J, Shen Q. One-step narrow-thermal-cycling strand exchange amplification for sensitive detection of porcine reproductive and respiratory syndrome virus. Arch Microbiol 2025; 207:151. [PMID: 40402260 DOI: 10.1007/s00203-025-04351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which is primarily characterized by respiratory and reproductive dysfunction, is an epidemic disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) that has the potential to economically devastate the global swine industry. Rapid and accurate detection of PRRSV is critical for effective control of PRRS in swine. In this study, a novel one-step, highly sensitive and specific accelerated strand exchange amplification (ASEA) method for the detection of PRRSV was developed. The detection limit of the ASEA method was determined to be 6 copies µL-1 of PRRSV RNA reference material or PRRSV in spiked swine blood. The ASEA method demonstrated the capacity to discern the currently circulating PRRSV genotypes without cross-reactivity with other porcine-derived pathogens that manifest similar clinical signs. The ASEA method exhibited a detection time of 35 min, and its clinical applicability was validated through the analysis of 5 inactivated blood samples and 62 clinical samples. The method's potential extends beyond the diagnosis of PRRSV, as it can also be applied to the rapid diagnosis of other RNA pathogens. This capacity is expected to make significant contributions to future epidemic prevention and surveillance efforts.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, P. R. China
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, P. R. China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, P. R. China
| | - Haiqiang Xie
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, P. R. China
| | - Liqun Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, P. R. China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, P. R. China
| | - Hongjing Shi
- Yangzhou Jianong Animal Husbandry Technology Co., Ltd, Yangzhou, 225251, P. R. China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, P. R. China.
| |
Collapse
|
2
|
Zhao G, Xue Y, Dai Y, Zhou X, Li H, Sheng G, Xu H, Chen Y. One-step reverse transcriptase-free miRNA detection system and its application for detection of gastrointestinal cancers. Talanta 2024; 278:126457. [PMID: 38917550 DOI: 10.1016/j.talanta.2024.126457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
MicroRNAs (miRNAs) play pivotal roles in gene regulation and their dysregulation is implicated in various diseases, including cancer. Current methods for miRNA analysis often involve complex procedures and high costs, limiting their clinical utility. Therefore, there is a critical need for the development of simpler and more cost-effective miRNA detection techniques to enable early disease diagnosis. In this study, we introduce a novel one-enzyme for miRNA one-step detection method using Taq DNA polymerase, termed OSMOS-qPCR. We optimized the PCR buffer, PCR program, Taq DNA Polymerase concentrations and reverse PCR primer concentrations, resulted in a wide linear range from 100 fM to 0.001 fM (R2 > 0.98 for each miRNA), the detection limit for OSMOS-qPCR was 0.0025 fM. Furthermore, OSMOS-qPCR demonstrates excellent specificity to differentiation of less than 0.1 % nonspecific signal. Finally, we demonstrated the robust amplification efficiency, enabling the detection of trace amounts of cell-free miRNA in serum samples, and the excellent discrimination ability between gastrointestinal cancers and control subjects (AUC value = 1.0) if combined two miRNAs. The development of OSMOS-qPCR offering a simpler, cost-effective, and efficient detection method, has the potential to be non-invasive strategy for early detection of gastrointestinal cancers.
Collapse
Affiliation(s)
- Guodong Zhao
- Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; ZJUT Yinhu Research Institute of Innovation and Entrepreneurship, Zhejiang, Hangzhou 311400, China; Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu 215300, China; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Xue
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou Jiangsu 215000, China.
| | - Yanmiao Dai
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu 215300, China
| | - Xiaojin Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Hui Li
- Department of Gastroenterology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Jiangsu 221002, China
| | - Guangsen Sheng
- Clinical Laboratory, Xuzhou New Health Hospital, Xuzhou 221005, China
| | - Hongwei Xu
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu 215300, China.
| | - Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
3
|
Xiang R, Liu GY, Hou Y, Xie LX, Wang QS, Hu SQ. Double domain fusion improves the reverse transcriptase activity and inhibitor tolerance of Bst DNA polymerase. Int J Biol Macromol 2024; 274:133243. [PMID: 38901507 DOI: 10.1016/j.ijbiomac.2024.133243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/μL sodium heparin, 0.8 ng/μL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/μL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.
Collapse
Affiliation(s)
- Rong Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guang-Yi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangzhou Enzyvalley Biotech Co., Ltd., Guangzhou 510555, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long-Xu Xie
- Guangzhou Hybribio Pharmaceutical Technology Co., Ltd., Guangzhou 510700, China
| | - Qing-Song Wang
- Guangzhou Hybribio Pharmaceutical Technology Co., Ltd., Guangzhou 510700, China
| | - Song-Qing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Zhang X, Wang X, Shi B, Li J, Fan Y, Li Y, Shi C, Ma C. A biphasic accelerated strand exchange amplification strategy for culture-independent and rapid detection of Salmonella enterica in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4083-4092. [PMID: 38855899 DOI: 10.1039/d4ay00613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Salmonella enterica is a common foodborne pathogen that can cause food poisoning in humans. The organism also infects and causes disease in animals. Rapid and sensitive detection of S. enterica is essential to prevent the spread of this pathogen. Traditional technologies for the extraction and detection of this pathogen from complex food matrices are cumbersome and time-consuming. In this study, we introduced a novel strategy of biphasic assay integrated with an accelerated strand exchange amplification (ASEA) method for efficient detection of S. enterica without culture or other extraction procedures. Food samples are rapidly dried, resulting in a physical fluidic network inside the dried food matrix, which allows polymerases and primers to access the target DNA and initiate ASEA. The dried food matrix is defined as the solid phase, while amplification products are enriched in the supernatant (liquid phase) and generate fluorescence signals. The analytical performances demonstrated that this strategy was able to specifically identify S. enterica and did not show any cross-reaction with other common foodborne pathogens. For artificially spiked food samples, the strategy can detect 5.0 × 101 CFU mL-1S. enterica in milk, 1.0 × 102 CFU g-1 in duck, scallop or lettuce, and 1.0 × 103 CFU g-1 in either oyster or cucumber samples without pre-enrichment of the target pathogen. We further validated the strategy using 82 real food samples, and this strategy showed 92% sensitivity. The entire detection process can be finished, sample-to-answer, within 50 min, dramatically decreasing the detection time. Therefore, we believe that the proposed method enables rapid and sensitive detection of S. enterica and holds great promise for the food safety industry.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiujuan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Binghui Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Junfeng Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
5
|
El Aamri M, Khalki Y, Mohammadi H, Amine A. Development of an Innovative Colorimetric DNA Biosensor Based on Sugar Measurement. BIOSENSORS 2023; 13:853. [PMID: 37754087 PMCID: PMC10526849 DOI: 10.3390/bios13090853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
The development of biosensors for target detection plays a crucial role in advancing various fields of bioscience. This work presents the development of a genosensor that exploits the colorimetric phenol-sulfuric acid sugar reaction for the detection of DNA, and RNA as specific targets, and DNA intercalator molecules. The biosensor combines simplicity and reliability to create a novel bioassay for accurate and rapid analysis. A 96-well microplate based on a polystyrene polymer was used as the platform for an unmodified capture DNA immobilization via a silanization process and with (3-Aminopropyl) triethoxysilane (APTES). After that, a hybridization step was carried out to catch the target molecule, followed by adding phenol and sulfuric acid to quantify the amount of DNA or RNA sugar backbone. This reaction generated a yellow-orange color on the wells measured at 490 nm, which was proportional to the target concentration. Under the optimum conditions, a calibration curve was obtained for each target. The developed biosensor demonstrated high sensitivity, good selectivity, and linear response over a wide concentration range for DNA and RNA targets. Additionally, the biosensor was successfully employed for the detection of DNA intercalator agents that inhibited the hybridization of DNA complementary to the immobilized capture DNA. The developed biosensor offers a potential tool for sensitive and selective detection in various applications, including virus diagnosis, genetic analysis, pathogenic bacteria monitoring, and drug discovery.
Collapse
Affiliation(s)
| | | | | | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (Y.K.); (H.M.)
| |
Collapse
|
6
|
Sun R, Chen J, Wang Y, Zhang Z, Li Y, Li F, Ma C, Han Q, Shi Y. Rapid, specific and sensitive detection of Vibrio parahaemolyticus in seafood by accelerated strand exchange amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:655-662. [PMID: 36655424 DOI: 10.1039/d2ay01889f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vibrio parahaemolyticus infectious diseases caused by seafood contamination may be life-threatening to people with weak immunity. The detection of the Vibrio parahaemolyticus pathogen in aquatic foods is critical for reducing the outbreak of human Vibrio parahaemolyticus-associated diseases. In this study, a highly sensitive, specific, and time-saving real-time narrow thermal-cycling amplification detection method was developed based on accelerated strand exchange amplification (ASEA). It can detect cultured Vibrio parahaemolyticus at concentrations as low as 25 CFU mL-1. In addition, for artificially spiked scallop meat, the detection limit was 1.8 × 103 CFU g-1 without pre-culture and 18 CFU g-1 of initial inoculum after 3 h enrichment. The whole assay, starting from DNA extraction, can be completed within 20 min. The ASEA detection method established in this study is an effective tool for the rapid detection of Vibrio parahaemolyticus strains in a large number of seafood samples.
Collapse
Affiliation(s)
- Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Jiao Chen
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yingeng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Zheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Fengmei Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qingxia Han
- Bin Zhou Polytechnic, Qingdao, 256600, PR China
| | - Yanjing Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
7
|
Zhuang L, Gong J, Shen Q, Yang J, Zhang D, Zhang P, Xie H, Hao P, Zhang Y, Zhu M. Graphene oxide-assisted optimized narrow-thermal-cycling amplification for accurate detection of Salmonella spp. ANAL SCI 2023; 39:191-202. [PMID: 36357755 DOI: 10.1007/s44211-022-00213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Abstract
Salmonella is a rod-shaped, Gram-negative zoonotic pathogen that poses a serious global socioeconomic and public health threat. Rapid and accurate detection of Salmonella spp. is critical for effective control of its infection. In this study, an accurate, sensitive and specific graphene oxide-assisted accelerated strand exchange amplification (GO-ASEA) method for rapid detection of Salmonella spp. was developed and validated. The detection limit of the GO-ASEA method was 8.6 × 101 fg μL-1 of Salmonella genomic DNA or 1 × 101 CFU g-1 of Salmonella in spiked chicken faeces free of pre-enrichment. And the GO-ASEA method could specifically detect Salmonella spp. without cross-reactivity with other enteric pathogens. In addition, the novel method achieved Salmonella detection within 30 min and was validated using 209 clinical samples, showing its good clinical applicability. Therefore, the GO-ASEA method is a new optional tool for the rapid detection of pathogenic microorganisms, which is ideal for food safety monitoring and high-throughput detection.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China.,State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, 210096, Nanjing, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, Yangzhou, People's Republic of China
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, Yangzhou, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, Yangzhou, People's Republic of China
| | - Haiqiang Xie
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China
| | - Pan Hao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, 210096, Nanjing, People's Republic of China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China.
| |
Collapse
|
8
|
Multiplex Accelerated PCR System for One-Step Helicobacter pylori cagA + Genotypes Detection: A Guide for Clinical Testing. Curr Microbiol 2022; 79:235. [PMID: 35767084 DOI: 10.1007/s00284-022-02931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
Abstract
Helicobacter pylori cagA + genotype is a leading risk factor for gastric cancer development making accurate identification and timely eradication of H. pylori critical to deadly gastric cancer prevention. Traditional clinical diagnostic methods, including conventional in vitro culture, histological examination, and (13/14)C-urea breath test methods, could only identify the presence of H. pylori, but these means are not capable of identification of cagA + strains. Herein, we firstly built a multiplex detection system based on novel accelerated PCR that could realize one-step detection of as low as 20 copies of H. pylori 16S rDNA and cagA genes within 30 min. In addition, this novel system performed strong anti-jamming capacity, and exhibited that it could specifically differentiate H. pylori cagA- and cagA + genotypes co-existence with other 4 kinds of gastrointestinal pathogens. Furthermore, this one-step system showed remarkable performance on rapid H. pylori infection diagnosis and cagA + genotypes identification in clinical gastric mucosa samples. Specifically, it outperformed histological examination in terms of accuracy and was superior to conventional PCR and DNA sequencing in terms of efficiency. This rapid, sensitive, and reliable H. pylori detection and identification system would break the limitation of traditional methods and realize H. pylori infection diagnosis and cagA + genotypes identification.
Collapse
|
9
|
Luan Z, Zhao Y, Wang Y, Ma C, Shi C. ccelerated cycling PCR: A novel tool for rapid, sensitive and specific detection of single-nucleotide mutation within 30 min. METHODS IN MICROBIOLOGY 2022; 199:106527. [PMID: 35753510 DOI: 10.1016/j.mimet.2022.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Rapid detection of single-nucleotide mutations (SNMs) has played a vital role for point-of-care testing. We herein first introduced accelerated thermal cycling into conventional allele-specific qPCR (AS-qPCR), named accelerated cycling PCR (AC-PCR) to achieve rapid and sensitive detection of SNM. It could simultaneously detect 10 copies of H. pylori DNA and identify its clarithromycin-resistance genotype within 30 min, and showed 100-fold enhanced specificity than AS-qPCR. Therefore, AC-PCR shows great potential in clinical diagnosis for drug-resistance mutation or genotyping analysis.
Collapse
Affiliation(s)
- Zhixian Luan
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yan Zhao
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yanling Wang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Cuiping Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
10
|
Zhuang L, Yang J, Song C, Sun L, Zhao B, Shen Q, Ren X, Shi H, Zhang Y, Zhu M. Accurate, rapid and highly sensitive detection of African swine fever virus via graphene oxide-based accelerated strand exchange amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2072-2082. [PMID: 35546107 DOI: 10.1039/d2ay00610c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
African swine fever is an acute, severe and highly contagious infectious disease caused by African swine fever virus (ASFV), posing a huge threat to the global swine industry. Rapid and accurate diagnostic methods are of great significance for the effective prevention and control of ASFV transmission. In this work, we established and evaluated a graphene oxide-based accelerated strand exchange amplification (GO-ASEA) method for rapid, highly sensitive, and quantitative detection of ASFV. The use of GO provided a novel solution reference for improving the specificity of strand exchange amplification and solving the potential false positive problem caused by primer dimers. The detection limit of the GO-ASEA assay was 5.8 × 10-1 copies per μL of ASFV (equal to 2.9 copies per reaction) or 5.8 × 100 copies per μL of ASFV in spiked swine nasal swabs. The selectivity of the GO-ASEA assay was supported by the ASFV DNA reference material and another seven porcine-derived viruses with similar clinical symptoms. The GO-ASEA assay took only about 29 minutes and was validated with 6 inactivated specimens and 52 swine nasal swabs, showing excellent clinical applicability. The novel assay is an accurate and practical method for rapid, highly sensitive detection of ASFV, and can potentially serve as a robust tool in epidemic prevention and point-of-care diagnosis.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Xiyan Ren
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Hongjing Shi
- Yangzhou Jianong Animal Husbandry Technology Co., Ltd, Yangzhou 225251, P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
11
|
Zhao X, Zhang J, Duan Y, Wan Q, Zhang X, Chen J, Shi C, Gao Y, Ma C. An ultra-fast, one-step RNA amplification method for the detection of Salmonella in seafood. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1111-1116. [PMID: 35212687 DOI: 10.1039/d1ay02056k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Salmonella is one of the most common pathogens associated with food-borne illness resulting from seafood consumption. Herein, an accelerated strand exchange amplification (ASEA) requiring only a pair of primers and one polymerase was first reported for ultra-fast, one-step RNA amplification detection of Salmonella in seafood. The ASEA method could detect Salmonella typhimurium DNA in dilutions as low as 10 copies per reaction and displayed good specificity for Salmonella under the interference of a variety of food-borne pathogens. In particular, ASEA could detect RNA in one step without additional reverse transcription. The detection limit for Salmonella in artificially contaminated oyster was 1 CFU mL-1 following 12 h of enrichment. Moreover, excellent performance of this assay was observed with 99.02% consistency relative to real-time PCR through actual sample detection. Combined with the rapid nucleic acid extraction method, the entire detection process could be completed within 20 min. Therefore, this assay opens up new prospects for the detection of food-borne pathogens in seafood with its rapidity, which would be very beneficial for food safety supervision and pathogen detection of high-throughput samples.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Jian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yake Duan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qianyi Wan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xin Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Jiao Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, The Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yan Gao
- Marine Science Research Institute of Shandong Provice (National Oceanographic Center of Qingdao), Qingdao 266071, China
| | - Cuiping Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry, Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
12
|
Zhao X, Li Y, Sun R, Fan Y, Mu X, Wang Y, Shi C, Ma C. Electrical potential-assisted DNA-RNA hybridization for rapid microRNA extraction. Anal Bioanal Chem 2022; 414:3529-3539. [PMID: 35229173 DOI: 10.1007/s00216-022-03979-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/15/2023]
Abstract
Analysis of microRNAs (miRNAs) is important in cancer diagnostics and therapy. Conventional methods used to extract miRNA for analysis are generally time-consuming. A novel approach for rapid and sensitive extraction of miRNAs is urgently need for clinical applications. Herein, a novel strategy based on electrical potential-assisted DNA-RNA hybridization was designed for miRNA extraction. The entire extraction process was accomplished in approximately 3 min, which is much shorter than the commercial adsorption column method, at more than 60 min, or the TRIzol method, at more than 90 min. Additionally, the method offered the advantages of simplicity and specificity during the extraction process by electrical potential-assisted hybridization of single-stranded DNA and RNA. Taking let-7a as an example, satisfactory results were achieved for miRNA extraction in serum, demonstrating the applicability in miRNA nucleic acid amplification.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Xiaofeng Mu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China.
| |
Collapse
|
13
|
Kang J, Li Y, Zhao Y, Wang Y, Ma C, Shi C. Nucleic acid extraction without electrical equipment via magnetic nanoparticles in Pasteur pipettes for pathogen detection. Anal Biochem 2021; 635:114445. [PMID: 34740597 PMCID: PMC8562038 DOI: 10.1016/j.ab.2021.114445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19 makes epidemic prevention and control become a growing global concern. Nucleic acid amplification testing (NAAT) can realize early and rapid detection of targets, thus it is considered as an ideal approach for detecting pathogens of severe acute infectious diseases. Rapid acquisition of high-quality target nucleic acid is the prerequisite to ensure the efficiency and accuracy of NAAT. Herein, we proposed a simple system in which magnetic nanoparticles (MNPs) based nucleic acid extraction was carried out in a plastic Pasteur pipette. Different from traditional approaches, this proposed system could be finished in 15 min without the supports of any electrical instruments. Furthermore, this system was superior to traditional MNPs based extraction methods in the aspects of rapid extraction and enhancing the sensitivity of a NAAT method, accelerated denaturation bubbles mediated strand exchange amplification (ASEA), to the pathogens from various artificial samples. Finally, this Pasteur pipette system was utilized for pathogen detection in actual samples of throat swabs, cervical swabs and gastric mucosa, the diagnosis results of which were identical with that provided by hospital. This rapid, easy-performing and efficiency extraction method ensures the applications of the NAAT in pathogen detection in regions with restricted resources.
Collapse
Affiliation(s)
- Jia Kang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yan Zhao
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yanling Wang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China,Corresponding author
| |
Collapse
|
14
|
Hou J, Li Y, Ma C, Shi C. Accelerated denaturation bubble-mediated strand exchange amplification for rapid and accurate detection of canine parvovirus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5514-5522. [PMID: 33164005 DOI: 10.1039/d0ay01751e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Canine parvovirus (CPV), a strong infectious canine pathogen, has been recognized as a threat to canine health worldwide since the 1970s. Although convenient detection methods have been developed, such as the colloidal gold test strip, most of these methods are based on antibody detection, which is relatively ineffective for detecting pathogens during the incubation period. For institutions and businesses with many dogs, e.g., dog training centers and kennels, more sensitive detection methods are required to prevent the swift spread of CPV. Thus, we developed accelerated denaturation bubble-mediated strand exchange amplification (ASEA) for CPV detection, and it is a rapid, convenient, and cost-effective method. ASEA was able to distinguish CPV genomic DNA in a mixture that included canine genomic DNA as well as nucleic acids sourced from nine other common pathogens, with detection of target DNA as low as 8.0 × 10-18 M within 16.6 min. Coupled with the thermal lysis method modified by us that only requires 3 min to perform, the entire detection procedure can be completed within approximately 20 min and only requires a simple heating block and an ordinary fluorescence PCR instrument. Moreover, ASEA exhibited greater sensitivity than colloidal gold test strips in actual specimen detection. This technique is rapid, easy to perform, and highly sensitive, and therefore, this approach has the potential to rapidly detect CPV in institutions with large populations of dogs.
Collapse
Affiliation(s)
- Jie Hou
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | | | | | | |
Collapse
|
15
|
Accurate, rapid and low-cost diagnosis of Mycoplasma pneumoniae via fast narrow-thermal-cycling denaturation bubble-mediated strand exchange amplification. Anal Bioanal Chem 2020; 412:8391-8399. [PMID: 33040157 PMCID: PMC7548028 DOI: 10.1007/s00216-020-02977-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022]
Abstract
Mycoplasma pneumoniae is a strong infectious pathogen that may cause severe respiratory infections. Since this pathogen may possess a latent period after infection, which sometimes leads to misdiagnosis by traditional diagnosis methods, the establishment of a rapid and sensitive diagnostic method is crucial for transmission prevention and timely treatment. Herein, a novel detection method was established for M. pneumoniae detection. The method, which improves upon a denaturation bubble-mediated strand exchange amplification (SEA) that we developed in 2016, is called accelerated SEA (ASEA). The established ASEA achieved detection of 1% M. pneumoniae genomic DNA in a DNA mixture from multiple pathogens, and the limit of detection (LOD) of ASEA was as low as 1.0 × 10-17 M (approximately 6.0 × 103 copies/mL). Considering that the threshold of an asymptomatic carriage is normally recommended as 1.0 × 104 copies/mL, this method was able to satisfy the requirement for practical diagnosis of M. pneumoniae. Moreover, the detection process was finished within 20.4 min, significantly shorter than real-time PCR and SEA. Furthermore, ASEA exhibited excellent performance in clinical specimen analysis, with sensitivity and specificity of 96.2% and 100%, respectively, compared with the "gold standard" real-time PCR. More importantly, similar to real-time PCR, ASEA requires only one pair of primers and ordinary commercial polymerase, and can be carried out using a conventional fluorescence real-time PCR instrument, which makes this method low-cost and easy to accomplish. Therefore, ASEA has the potential for wide use in the rapid detection of M. pneumoniae or other pathogens in large numbers of specimens. Graphical abstract.
Collapse
|