1
|
Cai Q, Wang Y, Ning Y, Jie G. "Two in one": A novel DNA cascade amplification strategy for trace detection of dual targets. Talanta 2024; 273:125978. [PMID: 38521021 DOI: 10.1016/j.talanta.2024.125978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
According to the characteristics of DNA programming, the cascaded nucleic acid amplification technology with larger output can overcome the problem of insufficient sensitivity of single nucleic acid amplification technology, and it combines the advantages of two or even multiple nucleic acid amplification technologies at the same time. In this work, a novel cascade signal amplification strategy with strand displacement amplification (SDA) and cascade hybridization chain reaction (HCR) was proposed for trace detection of hAAG and VEGF165. HAAG-induced SDA produced a large amount of S2 to open H2 on Polystyrene (PS) nanospheres, thereby triggering cascade HCR to form DNA dendritic nanostructures with rich fluorescence (FL) signal probes (565 nm). It could realize the amplification of FL signals for the detection of hAAG. Moreover, many doxorubicin (Dox) were loaded into the GC bases of DNA dendritic nanostructures, and its FL signal was effectively shielded. VEGF165 specifically bound to its aptamer to form G-quadruplex structures, which released Dox to produce a high FL signal (590 nm) for detection of VEGF165. This work developed a unique multifunctional DNA dendritic nanostructure fluorescence probe, and cleverly designed a new "On-off" switch strategy for sensitive trace detection of cancer markers.
Collapse
Affiliation(s)
- Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yuehui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yuanzhen Ning
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Shi J, Tang D, Lin Y, Wu Y, Luo H, Yan J, Huang KJ, Tan X. A highly sensitive self-powered sensing method designed on DNA circuit strategy and MoS 2 hollow nanorods for detection of thalassemia. Anal Chim Acta 2023; 1278:341713. [PMID: 37709456 DOI: 10.1016/j.aca.2023.341713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Thalassemia is one of the most common monogenic diseases, which seriously affects human growth and development, cardiovascular system, liver, etc. There is currently no effective cure for this disease, making screening for thalassemia particularly important. Herein, a self-powered portable device with high sensitivity and specificity for efficiently screening of low-level thalassemia is developed which is enabled with AuNPs/MoS2@C hollow nanorods and triple nucleic acid amplification technologies. It is noteworthy that AuNPs/MoS2@C electrode shows the advantages of high electrocatalytic activity, fast carrier migration rate and large specific surface area, which can significantly improve the stability and output signal of the platform. Using high-efficiency tetrahedral DNA as the probe, the target CD122 gene associated with thalassemia triggers a catalytic hairpin assembly reaction to achieve CD122 recycling while providing binding sites for subsequent hybridization chain reaction, greatly improving the detection accuracy and sensitivity of the device. A reliable electrochemical/colorimetric dual-mode assay for CD122 is then established, with a linear response range of 0.0001-100 pM for target concentration and open circuit voltage, and the detection limit is 78.7 aM (S/N = 3); a linear range of 0.0001-10000 pM for CD122 level and RGB Blue value, with a detection limit as low as 58.5 aM (S/N = 3). This method achieves ultra-sensitive and accurate detection of CD122, providing a new method for the rapid and accurate screening of thalassemia.
Collapse
Affiliation(s)
- Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yu Lin
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
3
|
|
4
|
Fluorescence energy transfer biosensing platform based on hyperbranched rolling circle amplification and multi-site strand displacement for ultrasensitive detection of miRNA. Anal Chim Acta 2022; 1222:340190. [DOI: 10.1016/j.aca.2022.340190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
|
5
|
Prakash HS, Maroju PA, Boppudi NSS, Balapure A, Ganesan R, Ray Dutta J. Influence of citrate buffer and flash heating in enhancing the sensitivity of ratiometric genosensing of Hepatitis C virus using plasmonic gold nanoparticles. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00134-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractGold nanoparticles (Au NPs) based technology has been shown to possess enormous potential in the viral nucleic acid diagnosis. Despite significant advancement in this domain, the existing literature reveals the diversity in the conditions employed for hybridization and tagging of thiolated nucleic acid probes over the Au NPs. Here we employ the probe sequence derived from the Hepatitis C virus to identify the optimal hybridization and thiol-Au NP tagging conditions. In a typical polymerase chain reaction, the probes are initially subjected to flash heating at elevated temperatures to obtain efficient annealing. Motivated by this, in the current study, the hybridization between the target and the antisense oligonucleotide (ASO) has been studied at 65 °C with and without employing flash heating at temperatures from 75 to 95 °C. Besides, the efficiency of the thiolated ASO’s tagging over the Au NPs with and without citrate buffer has been explored. The study has revealed the beneficial role of flash heating at 95 °C for efficient hybridization and the presence of citrate buffer for rapid and effective thiol tagging over the Au NPs. The combinatorial effect of these conditions has been found to be advantageous in enhancing the sensitivity of ratiometric genosensing using Au NPs.
Collapse
|
6
|
Li S, Fu Z, Wang C, Shang X, Zhao Y, Liu C, Pei M. An ultrasensitive and specific electrochemical biosensor for DNA detection based on T7 exonuclease-assisted regulatory strand displacement amplification. Anal Chim Acta 2021; 1183:338988. [PMID: 34627518 DOI: 10.1016/j.aca.2021.338988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
An electrochemical biosensor for determination of DNA is developed based on T7 exonuclease-assisted regulatory strand displacement dual recycling signal amplification strategy. First, the hairpin probe recognized and bound the target DNA to form a double strand nucleotide structure, and then the T7 exonuclease was introduced. After be digested by T7 exonuclease, the target DNA was released and entered the next cycle of T7 exonuclease-assisted recycle amplification, while accompanied by a large number of mimic targets (output DNAs) into another cycle. Second, the mimic target reacted with double-chain substrated DNA (CP) by a regulated toehold exchange mechanism, yielding the product complex of detection probes with the help of assisted DNA (S). Finally, after many cycles, a large number of detection probes were produced for binding numerous streptavidin-alkaline phosphatases. The electrochemical biosensor showed very high sensitivity and selectivity with a dynamic response ranged from 0.1 fM to 10 pM with a detection limit of 31.6 aM. Furthermore, this proposed biosensor was successfully applied to the detection of target DNA in 20% diluted serum. The developed strategy has been demonstrated to have the potential for application in molecular diagnostics.
Collapse
Affiliation(s)
- Shengqiang Li
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Zhengxiang Fu
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Chao Wang
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Xipeng Shang
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Yan Zhao
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Cuiying Liu
- Clinical Laboratory, Tianjin Xi Qing Hospital Tianjin, 300000, PR China.
| | - Ming Pei
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China; Division of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China.
| |
Collapse
|
7
|
Li J, Yang F, Jiang B, Zhou W, Xiang Y, Yuan R. The synchronization of multiple signal amplifications for label-free and sensitive aptamer-based sensing of a protein biomarker. Analyst 2021; 145:7858-7863. [PMID: 33020770 DOI: 10.1039/d0an01491e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The abnormal variation of the mucin 1 (MUC1) protein level is associated with the development of multiple cancers, and the monitoring of trace MUC1 can be useful for early disease diagnosis. Here, on the basis of the synchronization of DNA-fueled sequence recycling and dual rolling circle amplification (RCA), the establishment of a non-label and highly sensitive fluorescent aptamer-based detection strategy for the MUC1 protein biomarker is described. The target MUC1 binds the aptamer hairpin probe and causes its structure switching to release an ssDNA tail to trigger the recycling of the complex via two toehold-mediated strand displacement reactions under assistance of a fuel DNA. Such a recycling amplification leads to the formation of a partial dsDNA duplex with two primers at both ends, which cooperatively bind the circular DNA ring template to start the dual RCA to produce many G-quadruplex sequences. The protoporphyrin IX dye further associates with the G-quadruplex structures to show a dramatically elevated fluorescent signal for sensitively detecting MUC1 with a low detection limit of 0.5 pM. The established aptamer-based detecting strategy is also highly selective and can realize assay of MUC1 in diluted human serums, highlighting its potential for the detection of different protein biomarkers at low contents.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | | | | | | | | | | |
Collapse
|
8
|
Li H, Cai Q, Yan X, Jie G. Target-switchable DNA hydrogels coupled with a Bi 2Sn 2O 7/Bi 2S 3 heterojunction based on in situ anion exchange for the "signal-on" photoelectrochemical detection of DNA. NANOSCALE 2021; 13:7678-7684. [PMID: 33928980 DOI: 10.1039/d1nr00573a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, a novel photoelectrochemical (PEC) "signal-on" biosensor based on a Bi2Sn2O7/Bi2S3 heterojunctioncoupled with target-switchable DNA hydrogels is reported for the ultrasensitive detection of P53 gene DNA. For the first time, sulfide ions are discovered to display an excellent PEC sensitization effect on Bi2Sn2O7 material by forming the Bi2Sn2O7/Bi2S3 heterojunction. The sensitization amplitude increased by 63 times, and the photocurrent polarity switched from cathodic to anodic. When the target DNA-induced-cycling amplification process produced a mass of product chains (PD), PD was introduced into the target-switchable DNA hydrogels to quantitatively release sulfide ions, which were further introduced to the Bi2Sn2O7-modified PEC platform and resulted in an enormous enhancement of the PEC signal due to the significant sensitization effect of sulfide ions on Bi2Sn2O7via an anion-exchange reaction. The corresponding PEC signal change of the Bi2Sn2O7/Bi2S3 platform was used for the detection of target DNA. This biosensing strategy opens up a novel sulfide ion-sensitized PEC platform and exhibits excellent analytical performance with a wide linear range (100 fM-10 nM), which has broad application prospects in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xiaoshi Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|