1
|
Liu H, Wang J, Yang S, Li Z, Song M, Zhang X, Crommen J, Jiang Z, Zhang T. A magnetic beads-based ligand fishing method for rapid discovery of monoterpene indoles as monoamine oxidase A inhibitors from Hunteria zeylanica. J Chromatogr A 2024; 1722:464896. [PMID: 38631224 DOI: 10.1016/j.chroma.2024.464896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
In this study, a novel magnetic bead-based ligand fishing method was developed for rapid discovery of monoterpene indoles as monoamine oxidase A inhibitors from natural products. In order to improve the screening efficiency, two different magnetic beads, i.e. amine and carboxyl terminated magnetic beads, were comprehensively compared in terms of their ability to immobilize monoamine oxidase A (MAOA), biocatalytic activity and specific adsorption rates for affinity ligands. Carboxyl terminated magnetic beads performed better for MAOA immobilization and demonstrated superior performance in ligand fishing. The MAOA immobilized magnetic beads were applied to screen novel monoamine oxidase inhibitors in an alkaloid-rich plant, Hunteria zeylanica. Twelve MAOA affinity ligands were screened out, and ten of them were identified as monoterpene indole alkaloids by HPLC-Obitrap-MS/MS. Among them, six ligands, namely geissoschizol, vobasinol, yohimbol, dihydrocorynanthenol, eburnamine and (+)-isoeburnamine which exhibited inhibitory activity against MAOA with low IC50 values. To further explore their inhibitory mechanism, enzyme kinetic analysis and molecular docking studies were conducted.
Collapse
Affiliation(s)
- Huaixin Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Sirui Yang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Ziwei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
| | - Min Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
| | - Xiaoqi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000, Liege, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China.
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Furlani IL, Oliveira RV, Cass QB. Immobilization of cytochrome P450 enzymes onto magnetic beads: an approach to drug metabolism and biocatalysis. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
3
|
Glucose-6-phosphate dehydrogenase immobilized onto magnetic beads (G6PDH-Mb) as a generator system for production of NADPH: Development and application in metabolism studies. J Pharm Biomed Anal 2022; 219:114901. [DOI: 10.1016/j.jpba.2022.114901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
|
4
|
Ximenes IAT, Albino M, Sangregorio C, Cass QB, de Moraes MC. On-flow magnetic particle activity assay for the screening of human purine nucleoside phosphorylase inhibitors. J Chromatogr A 2021; 1663:462740. [PMID: 34942489 DOI: 10.1016/j.chroma.2021.462740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Human purine nucleoside phosphorylase (HsPNP) catalyzes reversible phosphorolysis of nucleosides and deoxynucleosides in the purine cascade. HsPNP has been a target on behalf of the development of new leads for the treatment of a variety of T-cell mediated disorders. Several studies on the HsPNP are focused on the identification of effective, safe, and selective inhibitors. Therefore, this study describes the development of direct, simple, reliable, and inexpensive enzymatic assays to screen HsPNP inhibitors. Initially, HsPNP was covalently immobilized on the surface of magnetic particles (MPs). Due to the versatility of the MPs as solid support for enzyme immobilization, two different methods to monitor the enzyme activity are presented. Firstly, the activity of HsPNP-MPs was assessed offline by HPLC-DAD quantifying the formed hypoxanthine. Then, HsPNP-MPs were trapped in a peek tube, furnishing a microreactor which was inserted on-flow in an HPLC-DAD system to monitor the enzyme activity by the hypoxanthine quantification. Kinetic assays provided KMapp values for the inosine substrate of 488.2 ± 49.1 and 1084 ± 111 µM for the offline and on-flow assays, respectively. For the first time, kinetic studies for Pi as substrate using the HsPNP-MPs exhibits a Michaelis-Menten kinetic, yielding KMapp values for offline and on-flow of 521.2 ± 62.9 µM and 601 ± 66.5 µM, respectively. Inhibition studies conducted with a fourth generation immucillin derivative (DI4G) were employed as proof of concept to validate the use of the HsPNP-MPs assays for screening purposes. Additionally, a small library containing 11 compounds was used to assess the selectivity of the developed assays. The results showed that both presented assays can be applied to selectively recognizing and characterizing HsPNP inhibitors. Particularly, the on-flow method exhibited a high throughput and performance because of its automation and represents an easy and practical approach to reuse the HsPNP-MPs. Besides, this novel enzyme activity assay model can be further applied to other biological targets.
Collapse
Affiliation(s)
- I A T Ximenes
- Instituto de Química, Universidade Federal Fluminense. Niterói, Rio de Janeiro, 24020-141, Brazil
| | - M Albino
- INSTM and Dept. of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - C Sangregorio
- INSTM and Dept. of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Q B Cass
- SEPARARE - Núcleo de Pesquisa em Cromatografia, Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, São Carlos, SP, Brazil
| | - M C de Moraes
- Instituto de Química, Universidade Federal Fluminense. Niterói, Rio de Janeiro, 24020-141, Brazil.
| |
Collapse
|
5
|
Matveeva VG, Bronstein LM. Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. NANOMATERIALS 2021; 11:nano11092257. [PMID: 34578573 PMCID: PMC8469579 DOI: 10.3390/nano11092257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
In this short review (Perspective), we identify key features of the performance of biocatalysts developed by the immobilization of enzymes on the supports containing magnetic nanoparticles (NPs), analyzing the scientific literature for the last five years. A clear advantage of magnetic supports is their easy separation due to the magnetic attraction between magnetic NPs and an external magnetic field, facilitating the biocatalyst reuse. This allows for savings of materials and energy in the biocatalytic process. Commonly, magnetic NPs are isolated from enzymes either by polymers, silica, or some other protective layer. However, in those cases when iron oxide NPs are in close proximity to the enzyme, the biocatalyst may display a fascinating behavior, allowing for synergy of the performance due to the enzyme-like properties shown in iron oxides. Another important parameter which is discussed in this review is the magnetic support porosity, especially in hierarchical porous supports. In the case of comparatively large pores, which can freely accommodate enzyme molecules without jeopardizing their conformation, the enzyme surface ordering may create an optimal crowding on the support, enhancing the biocatalytic performance. Other factors such as surface-modifying agents or special enzyme reactor designs can be also influential in the performance of magnetic NP based immobilized enzymes.
Collapse
Affiliation(s)
- Valentina G. Matveeva
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Regional Technological Centre, Tver State University, Zhelyabova Str., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
6
|
Magnetic particles for enzyme immobilization: A versatile support for ligand screening. J Pharm Biomed Anal 2021; 204:114286. [PMID: 34358814 DOI: 10.1016/j.jpba.2021.114286] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
Enzyme inhibitors represent a substantial fraction of all small molecules currently in clinical use. Therefore, the early stage of drug-discovery process and development efforts are focused on the identification of new enzyme inhibitors through screening assays. The use of immobilized enzymes on solid supports to probe ligand-enzyme interactions have been employed with success not only to identify and characterize but also to isolate new ligands from complex mixtures. Between the available solid supports, magnetic particles have emerged as a promising support for enzyme immobilization due to the high superficial area, easy separation from the reaction medium and versatility. Particularly, the ligand fishing assay has been employed as a very useful tool to rapidly isolate bioactive compounds from complex mixtures, and hence the use of magnetic particles for enzyme immobilization has been widespread. Thus, this review provides a critical overview of the screening assays using immobilized enzymes on magnetic particles between 2006 and 2021.
Collapse
|