1
|
Liao L, Xu F, Sun L, Luo Y, Guan Y, Xie Y, Liang B, Li B, Zhang K, Cao Z, Zeng J. Fabrication of a novel non-enzymatic glucose sensor based on ruthenium supported by a combination of PBA nanocubes and MOF nanosheets. Microchem J 2024; 207:111791. [DOI: 10.1016/j.microc.2024.111791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Thi LLD, Ho TH, Vu TV, Nguyen DLT, Tran MX, Rhim SH, Nguyen CD. P-incorporated CuO/Cu 2S heteronanorods as efficient electrocatalysts for the glucose oxidation reaction toward highly sensitive and selective glucose sensing. Phys Chem Chem Phys 2023; 26:249-260. [PMID: 38054775 DOI: 10.1039/d3cp04095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Currently, tremendous efforts have been made to explore efficient glucose oxidation electrocatalysts for enzymeless glucose sensors to meet the urgent demands for accurate and fast detection of glucose in the fields of health care and environmental monitoring. In this work, an advanced nanostructured material based on the well-aligned CuO/Cu2S heteronanorods incorporated with P atoms is successfully synthesized on a copper substrate. The as-synthesized material shows high catalytic behavior accompanied by outstanding electrical conductivity. This, combined with the unique morphology of unstacked nanorod arrays, which endow the entire material with a greater number of exposed active sites, make the proposed material act as a highly efficient electrocatalyst for the glucose oxidation reaction. Density functional theory calculations demonstrate that P doping endows P-doped CuO/Cu2S with excellent electrical conductivity and glucose adsorption capability, significantly improving its catalytic performance. As a result, a non-enzymatic glucose sensor fabricated based on our proposed material exhibits a broad linear detection range (0.02-8.2 mM) and a low detection limit (0.95 μM) with a high sensitivity of 2.68 mA mM-1 cm-2 and excellent selectivity.
Collapse
Affiliation(s)
- L L D Thi
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thi H Ho
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Tuan V Vu
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Dang L T Nguyen
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Minh Xuan Tran
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Sonny H Rhim
- Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - C-D Nguyen
- The University of Danang - University of Science and Education, Danang 550000, Vietnam.
| |
Collapse
|
3
|
Kim SE, Yoon JC, Tae HJ, Muthurasu A. Electrospun Manganese-Based Metal-Organic Frameworks for MnO x Nanostructures Embedded in Carbon Nanofibers as a High-Performance Nonenzymatic Glucose Sensor. ACS OMEGA 2023; 8:42689-42698. [PMID: 38024713 PMCID: PMC10652823 DOI: 10.1021/acsomega.3c05459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Material-specific electrocatalytic activity and electrode design are essential factors in evaluating the performance of electrochemical sensors. Herein, the technique described involves electrospinning manganese-based metal-organic frameworks (Mn-MOFs) to develop MnOx nanostructures embedded in carbon nanofibers. The resulting structure features an electrocatalytic material for an enzyme-free glucose sensor. The elemental composition, morphology, and microstructure of the fabricated electrodes materials were characterized by using energy-dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometric i-t (current-time) techniques are characteristically employed to assess the electrochemical performance of materials. The MOF MnOx-CNFs nanostructures significantly improve detection performance for nonenzymatic amperometric glucose sensors, including a broad linear range (0 mM to 9.1 mM), high sensitivity (4080.6 μA mM-1 cm-2), a low detection limit (0.3 μM, S/N = 3), acceptable selectivity, outstanding reproducibility, and stability. The strategy of metal and metal oxide-integrated CNF nanostructures based on MOFs opens interesting possibilities for the development of high-performance electrochemical sensors.
Collapse
Affiliation(s)
- So Eun Kim
- Department
of Emergency Medicine, Research Institute
of Clinical Medicine of Jeonbuk National University and Biomedical
Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jae Chol Yoon
- Department
of Emergency Medicine, Research Institute
of Clinical Medicine of Jeonbuk National University and Biomedical
Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hyun-Jin Tae
- College
of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Alagan Muthurasu
- Department
of Nano Convergence Technology, Jeonbuk
National University, Jeonju 54907, Republic
of Korea
| |
Collapse
|
4
|
Yang X, Huang Y, Yang S, Tang M, Liu J, Shen J, Fa H, Huo D, Hou C, Yang M. A label-free fluorescent sensor for rapid and sensitive detection of ctDNA based on fluorescent PDA nanoparticles. Analyst 2023; 148:4885-4896. [PMID: 37650747 DOI: 10.1039/d3an01169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Technological advances in the detection of circulating tumor DNA (ctDNA) have made new options available for diagnosis, classification, biological studies, and treatment selection. However, effective and practical methods for analyzing this emerging class of biomarkers are still lacking. In this work, a fluorescent biosensor was designed for the label-free detection of ctDNA (EGFR 19 del for non-small cell lung cancer, NSCLC). The biosensor was based on the fact that MnO2 nanosheets (MnO2 NSs) have stronger affinity towards single-stranded DNA (ssDNA), as compared with double-stranded DNA (dsDNA). As a high-performance nanoenzyme, MnO2 NSs could oxidize dopamine (DA) into fluorescent polydopamine nanoparticles (FL-PDA NPs), which could be used as a fluorescence signal. The probe ssDNA could be adsorbed on the surface of MnO2 NSs through π-π stacking, and the active site would be masked, causing a lower fluorescence. After the targets were recognized by probe ssDNA to form dsDNA, its affinity for MnO2 NSs decreased and the active site recovered, causing a restored fluorescence. It was verified that Mn ions, •OH radicals and electron transfer were the important factors in the catalytic oxidation of DA. Under the optimal experimental conditions, this biosensor exhibited a detection limit of 380 pM and a linear range of 25-125 nM, providing reliable readout in a short time (45 min). This sensor exhibited outstanding specificity, stability and reproducibility. In addition, this sensor was applied to the detection of ctDNA in serum samples and cell lysates. It is demonstrated that FL-PDA NPs can be used as a fluorescence signal for easy, rapid and label-free detection of ctDNA without any other amplification strategies, and the proposed strategy has great potential for biomarker detection in the field of liquid biopsy.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Yang Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Miao Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Jinhui Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
5
|
Zhang Y, Xia P, Fan H, Gao X, Ouyang F, Chen W. In situ growth of the CoO nanoneedle array on a 3D nickel foam toward a high-performance glucose sensor. Dalton Trans 2023; 52:2603-2610. [PMID: 36734601 DOI: 10.1039/d2dt03877c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A glucose sensor with high sensitivity and low detection limit is vital for human beings' health. Herein, a CoO nanoneedle array with an unique electronic structure was successfully constructed by a hydrothermal and subsequent high-temperature calcination process. The optimized CoO-400 nanoneedles exhibit a larger electrochemical active surface area, beneficial electronic structure, favorable lattice distortion, and abundant active sites, which effectively promote electrochemical properties toward glucose sensing. The glucose sensor constructed by CoO-400 nanoneedles shows a high sensitivity of 84.23 mA cm-2 mM-1 and low detection limit of 4.4 × 10-7 M, superior to the results from most previous reports. Moreover, outstanding anti-interference ability, superior long-term stability, good repeatability, and satisfactory reproducibility in glucose detection for CoO-400 nanoneedles are also demonstrated.
Collapse
Affiliation(s)
- Yue Zhang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, People's Republic of China.
| | - Pengkun Xia
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Xiaohui Gao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, People's Republic of China.
| | - Fangping Ouyang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, People's Republic of China.
| | - Wei Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal university, Guilin 541004, People's Republic of China
| |
Collapse
|
6
|
Detection of glucose using a thin-walled honeycombed MnO2 grown on mesoporous CoFe2O4 nanosheets. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|