1
|
Liu L, Yan D, Ma Y, Hou P, Qi P, Zhang X, Liu Y, Chen S. Advanced Large-Stokes-Shift Fluorescent Probe for the Detection of Biothiols: Facilitating Accurate Indirect Measurement of β-Lactamases. Int J Mol Sci 2025; 26:525. [PMID: 39859239 PMCID: PMC11764503 DOI: 10.3390/ijms26020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time. Based on these properties, Bibc-DNBS successfully monitored the biothiol levels in live cells and zebrafish models, providing an effective analytical tool for real-time monitoring of biothiols. More importantly, Bibc-DNBS could be useful for indirectly detecting β-lactamases. Bibc-DNBS(3-(1H-benzo[d]imidazol-2-yl)-4'-cyano-[1,1'-biphenyl]-4-yl2,4-dinitrobenzenesulfonate) facilitated the screening of β-lactamase inhibitors, using tazobactam and clavulanic acid as model compounds, with respective semi-inhibitory concentration values of 31.32 μM and 2.26 μM, respectively. It might also be applied to distinguish sensitive strain Staphylococcus aureus ATCC 29213 and drug-resistant strain Enterobacter cloacae ATCC 13047, which could provide strong support for the clinical application of antibiotics and the development of new drugs.
Collapse
Affiliation(s)
- Likun Liu
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Dongling Yan
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yukun Ma
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Pengfei Qi
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Xue Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yitong Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
2
|
Zhang W, Wu B, Liang M, Zhang M, Hu Y, Huang ZS, Ye X, Du B, Quan YY, Jiang Y. A lysosome-targeted fluorescent probe based on a BODIPY structure for Cys/Hcy detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:686-694. [PMID: 38205809 DOI: 10.1039/d3ay01965a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cysteine (Cys) and homocysteine (Hcy) are important biothiols in living organisms. They play important roles in a variety of physiological and pathological processes. Therefore, it is very important to design an optical probe for the selective detection of Cys/Hcy. Herein, we report the design and synthesis of a fluorescent probe NBD-B-T based on a boron-dipyrromethene (BODIPY) structure, which showed an excellent lysosome targeting ability and an outstanding Cys/Hcy detection capacity. For NBD-B-T, the sensing group 7-nitro-2,1,3-benzoxadiazole (NBD) and the lysosomal targeting group morpholine were introduced. The results show that the NBD-B-T probe can detect Cys/Hcy with fluorescence emission turn-on performance. The low detection limits of this probe are about 76.0 nM for Hcy and 97.6 nM for Cys, respectively. The NBD-B-T probe has a low detection limit, high stability, and excellent selectivity and sensitivity. More importantly, the NBD-B-T can target lysosome, and simultaneously detect the Cys/Hcy in living cells.
Collapse
Affiliation(s)
- Wenxuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Binbin Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Manshan Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Mengpei Zhang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University: Xiangshan First People's Hospital Medical and Health Group, Xiangshan 315700, China.
| | - Yutao Hu
- The Affiliated Xiangshan Hospital of Wenzhou Medical University: Xiangshan First People's Hospital Medical and Health Group, Xiangshan 315700, China.
| | - Zu-Sheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaoxia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Bing Du
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yun-Yun Quan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University: Xiangshan First People's Hospital Medical and Health Group, Xiangshan 315700, China.
| |
Collapse
|
3
|
Roy K, Ghosh AK, Das PK. Naphthalene Diimide-Based Orange Emitting Luminogen: A Fluorometric Probe for Thiol Sensing through the Click Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15690-15704. [PMID: 37874762 DOI: 10.1021/acs.langmuir.3c02221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Fluorometric sensors have gained considerable attention in various fields, including environmental monitoring, biomedical research, and clinical diagnostics. This article delineates the fabrication of an orange emitting naphthalene diimide (NDI) derivative consisting of maleimide moiety (NDI-mal) for fluorometric sensing of thiols. Spherical shaped organic nanoparticles (∼100-150 nm) were constructed by NDI-mal in dimethyl sulfoxide (DMSO)/dimethylformamide (DMF)-water through J-type aggregation. NDI-mal displayed self-assembly driven aggregation-induced emission (AIE) through excimer formation at λem= 588 nm at fw = 99 vol % DMSO/DMF-water. Naphthyl residue at both terminals of NDI-mal facilitates intramolecular charge transfer (ICT) from the donor naphthyl residue to the acceptor NDI core. The fluorescence intensity of NDI-mal fluorescent organic nanoparticles (FONPs) got quenched in the presence of thiols due to thiol-maleimide adduct formation (Michael addition). NDI-mal FONPs selectively probed thiol functionalized small molecules (4-aminothiophenol), biomolecules (glutathione (GSH)), and proteins (reduced BSA) with high sensitivity having a limit of detection of 15.3 nM, 6.0 nM, and 9.2 ng/mL, respectively. Importantly, thiol sensing was selective against analogous small molecules, biomolecules, and proteins devoid of thiol moieties. Cellular imaging demonstrated selective diagnosis of cancer cells by NDI-mal FONPs through quenching of its emission upon interaction with thiols in B16F10 cells due to the high abundance of GSH in cancer cells compared to NIH3T3 cells. NDI-mal FONPs emitted their native fluorescence inside cells subjected to reactive oxygen species mediated thiol oxidation via Fenton's reaction. Notably, GSH-maleimide adduct formation by NDI-mal FONPs displayed notable therapeutic efficacy against cancer cells having ∼2.4-fold higher killing of B16F10 in comparison to NIH3T3 cells possibly through oxidative stress induced apoptosis owing to the depletion in the GSH level. Thus, NDI-mal AIE-gen successfully emerged as a selective and sensitive probe toward thiols through thiol-maleimide click chemistry with therapeutic ability against cancer cells in the absence of systematic intervention.
Collapse
Affiliation(s)
- Kathakoli Roy
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Gao X, Shu Z, Liu X, Lin J, Zhang P. Manipulating the monomer-dimer transformation of a heptamethine cyanine ligand: near infrared chromogenic recognition of biothiols. ANAL SCI 2023:10.1007/s44211-023-00329-1. [PMID: 37027111 DOI: 10.1007/s44211-023-00329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023]
Abstract
A novel absorbance recovery method has been developed for the determination of biothiols with a near-infrared reagent. This method employs a two-reagent system composed of cation heptamethine cyanine (CyL) and Hg2+. The absorbance of CyL, with a maximum peak at 760 nm, was decreased due to addition of Hg2+, but recovered when biothiols were added. Under optimal conditions, the reciprocal extent of recovered absorbance was proportional to the concentration of biothiols. The calibration curves are linear over the range of (0.3-7.0) × 10-6 M for cysteine, (1.0-10.0) × 10-6 M for homocysteine and (1.0-9.0) × 10-6 M for glutathione. Because of the specific affinity of Hg2+for biothiols, there is minimal interference from other amino acids. This method has been successfully applied to the determination of homocysteine in human urine samples with satisfactory results.
Collapse
Affiliation(s)
- Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Zhigang Shu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Xuehan Liu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Jinming Lin
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| |
Collapse
|
5
|
Zhang JY, Yang BB, Yang YD, Wang R, Li L. Specific chiroptical sensing of cysteine via ultrasound-assisted formation of disulfide bonds in aqueous solution. ULTRASONICS SONOCHEMISTRY 2022; 86:106007. [PMID: 35436673 PMCID: PMC9036132 DOI: 10.1016/j.ultsonch.2022.106007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Cysteine (Cys) can serve as a biomarker to indicate diseases or disorders, and its chiral sensing has attracted increasing attention. Herein, we established an ultrasound-facilitated chiral sensing method for Cys using 4-chloro-7-nitro-1,2,3-benzoxadiazole (NBD-Cl) and electronic circular dichroism (ECD) spectroscopy. The formation of chiral disulfide bonds induced degenerate exciton coupling between two NBD chromophores, resulting in intense Cotton effects (CEs) of the sensing product. The anisotropy factor (g) was linearly correlated with the enantiomeric excess of Cys across the visible region (400-500 nm), and other natural amino acids or biothiols did not interfere with the detection. This ultrasound-promoted efficient and specific chiral sensing method of Cys has potential for application in the diagnosis of related diseases.
Collapse
Affiliation(s)
- Jun-Yao Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ru Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
|