1
|
Kalita M, Yadav K, Archana A, Gopakumar TG, Vasudev PG, Ramapanicker R. Incorporation of phenylcarbonyl groups in the sidechain: A tool to induce ordered assembly of peptides on surfaces. J Pept Sci 2024; 30:e3629. [PMID: 38898708 DOI: 10.1002/psc.3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
The possibility of introducing various functionalities on peptides with relative ease allows them to be used for molecular applications. However, oligopeptides prepared entirely from proteinogenic amino acids seldom assemble as ordered structures on surfaces. Therefore, sidechain modifications of peptides that can increase the intermolecular interactions without altering the constitution of a given peptide become an attractive route to self-assembling them on surfaces. We find that replacing phenylalanine residues with unusual amino acids that have phenylcarbonyl sidechains in oligopeptides increases the formation of ordered self-assembly on a highly ordered pyrolytic graphite surface. Peptides containing the modified amino acids provided extended long-range ordered assemblies, while the analogous peptides containing phenylalanine residues failed to form long-range assemblies. X-ray crystallographic analysis of the bulk structures of these peptides and the analogous peptides containing phenylalanine residues reveal that such modifications do not alter the secondary structure in crystals. It also reveals that the secondary hydrogen bonding interaction through phenylcarbonyl sidechains facilitates extended growth of the peptides on graphite.
Collapse
Affiliation(s)
- Mrinal Kalita
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Khushboo Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Archana Archana
- Molecular and Structural Biology Department, CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | - Prema G Vasudev
- Molecular and Structural Biology Department, CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ramesh Ramapanicker
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
2
|
Rana P, Jennifer G A, Rao T S, Mukhopadhyay S, Varathan E, Das P. Polarity-Induced Morphological Transformation with Tunable Optical Output of Terpyridine-Phenanthro[9,10- d]imidazole-Based Ligand and Its Zn(II) Complexes with I- V Characteristics. ACS OMEGA 2023; 8:48855-48872. [PMID: 38162736 PMCID: PMC10753698 DOI: 10.1021/acsomega.3c06283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Self-assembled nanostructures obtained from various functional π-conjugated organic molecules have been able to draw substantial interest due to their inherent optical properties, which are imperative for developing optoelectronic devices, multiple-color-emitting devices with color-tunable displays, and optical sensors. These π-conjugated molecules have proven their potential employment in various organic electronic applications. Therefore, the stimuli-responsive fabrication of these π-conjugated systems into a well-ordered assembly is extremely crucial to tuning their inherent optical properties for improved performance in organic electronic applications. To this end, herein, we have designed and synthesized a functional π-conjugated molecule (TP) having phenanthro[9,10-d]imidazole with terpyridine substitution at the 2 position and its corresponding metal complexes (TPZn and (TP)2Zn). By varying the polarity of the self-assembly medium, TP, TPZn, and (TP)2Zn are fabricated into well-ordered superstructures with morphological individualities. However, this medium polarity-induced self-assembly can tune the inherent optical properties of TP, TPZn, and (TP)2Zn and generate multiple fluorescence colors. Particularly, this property makes them useful for organic electronic applications, which require adjustable luminescence output. More importantly, in 10% aqueous-THF medium, TPZn exhibited H-type aggregation-induced white light emission and behaved as a single-component white light emitter. The experimentally obtained results of the solvent polarity-induced variation in optical properties as well as self-assembly patterns were further confirmed by theoretical investigation using density functional theory calculations. Furthermore, we investigated the I-V characteristics, both vertical and horizontal, using ITO and glass surfaces coated with TP, TPZn, and (TP)2Zn, respectively, and displayed maximum current density for the TPZn-coated surface with the order of measured current density TPZn > TP > (TP)2Zn. This observed order of current density measurements was also supported by a direct band gap calculation associated with the frontier molecular orbitals using the Tauc plot. Hence, solvent polarity-induced self-assembly behavior with adjustable luminescence output and superior I-V characteristics of TPZn make it an exceptional candidate for organic electronic applications and electronic device fabrication.
Collapse
Affiliation(s)
- Priya Rana
- Department
of Chemistry, SRM Institute of Science and
Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Abigail Jennifer G
- Department
of Chemistry, SRM Institute of Science and
Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Shanmuka Rao T
- Department
of Physics, SRM University, Village − Neeru Konda, Guntur, Andhra Pradesh 522240, India
| | - Sabyasachi Mukhopadhyay
- Department
of Physics, SRM University, Village − Neeru Konda, Guntur, Andhra Pradesh 522240, India
| | - Elumalai Varathan
- Department
of Chemistry, SRM Institute of Science and
Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Priyadip Das
- Department
of Chemistry, SRM Institute of Science and
Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
3
|
Tian Y, Li J, Wang A, Li Q, Jian H, Bai S. Peptide-Based Optical/Electronic Materials: Assembly and Recent Applications in Biomedicine, Sensing, and Energy Storage. Macromol Biosci 2023; 23:e2300171. [PMID: 37466295 DOI: 10.1002/mabi.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023]
Abstract
The unique optical and electronic properties of living systems are impressive. Peptide-based supramolecular self-assembly systems attempt to mimic these properties by preparation optical/electronic function materials with specific structure through simple building blocks, rational molecular design, and specific kinetic stimulation. From the perspective of building blocks and assembly strategies, the unique optical and electronic properties of peptide-based nanostructures, including peptides self-assembly and peptides regulate the assembly of external function subunits, are systematically reviewed. Additionally, their applications in biomedicine, sensing, and energy storage are also highlighted. This bioinspired peptide-based function material is one of the hot candidates for the new generation of green intellect materials, with many advantages such as biocompatibility, environmental friendliness, and adjustable morphology.
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Lai C, Zhang B, Li D, Tan X, Luo B, Shen J, Li L, Shao J. Rational design of a minimum nanoplatform for maximizing therapeutic potency: Three birds with one stone. J Colloid Interface Sci 2023; 635:441-455. [PMID: 36599242 DOI: 10.1016/j.jcis.2022.12.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Therapeutic modalities and drug formulations play a crucial and prominent role in actualizing effective treatment and radical cures of tumors. However, the therapeutic efficiency was severely limited by tumor recurrence and complex multi-step preparation of formulation. Therefore, the exploration of novel nanoparticles via a simple and green synthesis process for conquering traditional obstacles and improving therapeutic efficiency is an appealing, yet remarkably challenging task. Herein, a universal nanoplatform allows all cancerous cell-targeting, acid-responsive, cell imaging, synergistic chemotherapy, and nucleolar targeted phototherapy function was tactfully designed and constructed by using chemotherapeutic agents ursolic acid (UA), sorafenib (SF), and carbon dots (CDs) photosensitizers (PSs). The designed US NPs were formed by self-assembly of UA and SF associated with electrostatic, π-π stacking, and hydrophobic interactions. After hydrogen bonding reaction with CDs, the obtained (denoted as USC NPs) have a relatively uniform size of an average 125.6 nm, which facilitated the favorable accumulation of drugs at the tumor region through a potential enhanced permeability and retention (EPR) effect as compared to their counterpart of free CDs solution. Both in vitro and in vivo studies revealed that the advanced platform commenced synergistic anticancer therapeutic potency, imperceptible systematical toxicity, and remarkable reticence towards drug-resistant cancer cells. Moreover, the CDs PSs possess intrinsic nucleolus-targeting ability. Taken together, this theranostics system can fully play the role of "killing three birds with one stone" in a safe manner, implying a promising direction for exploring treatment strategies for cancer and endowing them with great potential for future translational research and providing a new vision for the advancing of an exceptionally forceful protocol for practical cancer therapy.
Collapse
Affiliation(s)
- Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523058, China
| | - Dongmiao Li
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bangyue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
5
|
Tian Y, Li J, Wang A, Shang Z, Jian H, Li Q, Bai S, Yan X. Long-range ordered amino acid assemblies exhibit effective optical-to-electrical transduction and stable photoluminescence. Acta Biomater 2022; 154:135-144. [PMID: 36216126 DOI: 10.1016/j.actbio.2022.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Bio-endogenous peptide molecules are ideal components for fabrication of biocompatible and environmentally friendly semiconductors materials. However, to date, their applications have been limited due to the difficulty in obtaining stable, high-performance devices. Herein, simple amino acid derivatives fluorenylmethoxycarbonyl-leucine (Fmoc-L) and fluorenylmethoxycarbonyl-tryptophan (Fmoc-W) are utilized to form long-range ordered supramolecular nanostructures by tight aromatic stacking and extensive hydrogen bonding with mechanical, electrical and optical properties. For the first time, without addition of any photosensitizers, pure Fmoc-L microbelts and Fmoc-W microwires exhibit Young's modulus up to 28.79 and 26.96 GPa, and unprecedently high values of photocurrent responses up to 2.2 and 2.3 μA/cm2, respectively. Meanwhile, Fmoc-W microwires with stable blue fluorescent emission under continuous excitation are successfully used as LED phosphors. Mechanism analysis shows that these two amino acids derivatives firstly formed dimers to reduce the bandgap, then further assemble into bioinspired semiconductor materials using the dimers as the building blocks. In this process, aromatic residues of amino acids are more conducive to the formation of semiconducting characteristics than fluorenyl groups. STATEMENT OF SIGNIFICANCE: Long-range ordered amino acid derivative assemblies with mechanical, electrical and optical properties were fabricated by a green and facile biomimetic strategy. These amino acid assemblies have Young's modulus comparable to that of concrete and exhibit typical semiconducting characteristics. Even without the addition of any photosensitizer, pure amino acid assemblies can still produce a strong photocurrent response and an unusually stable photoluminescence. The results suggest that amino acid structures with hydrophilic C-terminal and aromatic residues are more conducive to the formation of semiconducting characteristics. This work unlocks the potential for amino acid molecules to self-assemble into high-performance bioinspired semiconductors, providing a reference for customized development of biocompatible and environmentally friendly semiconductor materials through rational molecular design.
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixin Shang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Tian Y, Li J, Zhang X, Wang A, Jian H, Li Q, Bai S. Bioinspired self-assembled nanoparticles with stable fluorescent properties in wide visible light region. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|