1
|
Huang Y, Chuang R, Liu M, Zhang H, Li H, Xu L, Xia N, Xiao C, Rayan AM, Ghamry M. Bioactives derived from egg by-products: Preparation, health benefits, and high-value-added applications. Food Chem 2025; 480:143889. [PMID: 40138827 DOI: 10.1016/j.foodchem.2025.143889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Eggs are widely known for their rich nutritional profile, resulting in the production of numerous egg by-products. Recycling of egg by-products has become a key for achieving sustainable development. This work reviews recent advances on preparation of bioactives derived from egg by-products and their health benefits from the perspective of by-product valorization. Meanwhile, the potential for high-value-added applications of egg by-products is discussed. Egg by-products contain bioactives (proteins, minerals, glycosaminoglycans, and bioactive peptides) with various health benefits, including antioxidant, anti-inflammatory, metal ion-chelating, and protective activity against metabolic syndrome, but mechanisms behind these phenomena are still unclear. Therefore, combination of multiple models and multiple omics to reveal functional mechanisms of the bioactives is imperative, and further clinical trials are necessary to evaluate their bioaccessibility. Additionally, research on the product formulation based on egg by-products or their derived bioactives could expand the valorization of the by-products and contribute to global sustainable development.
Collapse
Affiliation(s)
- Yue Huang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Rui Chuang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Lina Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
2
|
Esmaeili S, Rahmati M, Zamani S, Djalilian AR, Arabpour Z, Salehi M. A comparison of several separation processes for eggshell membrane powder as a natural biomaterial for skin regeneration. Skin Res Technol 2024; 30:e70038. [PMID: 39256190 PMCID: PMC11387111 DOI: 10.1111/srt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Numerous studies have focused on skin damage, the most prevalent physical injury, aiming to improve wound healing. The exploration of biomaterials, specifically eggshell membranes (ESMs), is undertaken to accelerate the recovery of skin injuries. The membrane must be separated from the shell to make this biomaterial usable. Hence, this investigation aimed to identify more about the methods for membrane isolation and determine the most efficient one for usage as a biomaterial. METHODS AND MATERIALS For this purpose, ESM was removed from eggs using different protocols (with sodium carbonate, acetic acid, HCl, calcium carbonate, and using forceps for separation). Consequently, we have examined the membranes' mechanical and morphological qualities. RESULTS According to the analysis of microscopic surface morphology, the membranes have appropriate porosity. MTT assay also revealed that the membranes have no cytotoxic effect on 3T3 cells. The results indicated that the ESM had acquired acceptable coagulation and was compatible with blood. Based on the obtained results, Provacol 4 (0.5-mol HCl and neutralized with 0.1-mol NaOH) was better than other methods of extraction and eggshell separation because it was more cell-compatible and more compatible with blood. CONCLUSION This study demonstrates that ESMs can be used as a suitable biomaterial in medical applications.
Collapse
Affiliation(s)
- Samaneh Esmaeili
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Majid Rahmati
- Department of Medical BiotechnologySchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Department of Tissue EngineeringSchool of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
3
|
Yu M, Park C, Son YB, Jo SE, Jeon SH, Kim YJ, Han SB, Hong JT, Son DJ. Time-Dependent Effect of Eggshell Membrane on Monosodium-Iodoacetate-Induced Osteoarthritis: Early-Stage Inflammation Control and Late-Stage Cartilage Protection. Nutrients 2024; 16:1885. [PMID: 38931240 PMCID: PMC11206400 DOI: 10.3390/nu16121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects have prompted exploration into functional dietary supplements. Recently, eggshell membrane (ESM) has emerged as a potential functional ingredient for joint and connective tissue disorders due to its clinical efficacy in relieving joint pain and stiffness. Despite promising clinical evidence, the effects of ESM on OA progression and its mechanism of action remain poorly understood. This study evaluated the efficacy of Ovomet®, a powdered natural ESM, against joint pain and disease progression in a monosodium iodoacetate (MIA)-induced rodent model of OA in mice and rats. The results demonstrate that ESM significantly alleviates joint pain and attenuates articular cartilage destruction in both mice and rats that received oral supplementation for 5 days prior to OA induction and for 28 days thereafter. Interestingly, ESM significantly inhibited mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), as well as inflammatory mediators, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase in the knee joint cartilage at the early stage of OA, within 7 days after OA induction. However, this effect was not observed in the late stage at 28 days after OA induction. ESM further attenuates the induction of protein expression for cartilage-degrading enzymes like matrix metalloproteinase (MMPs) 3 and 13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), in the late-stage. In addition, MIA-induced reduction of the protein expression levels of cartilage components, cartilage oligomeric matrix protein (COMP), aggrecan (ACAN) and collagen type II α-1 chain (COL2α1), and cartilage extracellular matrix (ECM) synthesis promoting transcriptional factor SRY-Box 9 (SOX-9) were increased via ESM treatment in the cartilage tissue. Our findings suggest that Ovomet®, a natural ESM powder, is a promising dietary functional ingredient that can alleviate pain, inflammatory response, and cartilage degradation associated with the progression of OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dong Ju Son
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaengmyong 1-ro, Osong-eup, Heungduk-gu, Cheongju 28160, Chungbuk, Republic of Korea; (M.Y.); (C.P.); (Y.B.S.); (S.E.J.); (S.H.J.); (Y.J.K.); (S.B.H.); (J.T.H.)
| |
Collapse
|
4
|
Premarathna AD, Ahmed TAE, Rjabovs V, Hammami R, Critchley AT, Tuvikene R, Hincke MT. Immunomodulation by xylan and carrageenan-type polysaccharides from red seaweeds: Anti-inflammatory, wound healing, cytoprotective, and anticoagulant activities. Int J Biol Macromol 2024; 260:129433. [PMID: 38232891 DOI: 10.1016/j.ijbiomac.2024.129433] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The immunomodulatory properties of the polysaccharides (carrageenan, xylan) from Chondrus crispus (CC), Ahnfeltiopsis devoniensis (AD), Sarcodiotheca gaudichaudii (SG) and Palmaria palmata (PP) algal species were studied. Using RAW264.7 macrophages, we investigated the proliferation and migration capacity of different extracts along with their immunomodulatory activities, including nitric oxide (NO) production, phagocytosis, and secretion of pro-inflammatory cytokines. Polysaccharides from C. crispus and S. gaudichaudii effectively mitigated inflammation and improved scratch-wound healing. Polysaccharide fractions extracted under cold conditions (25 °C), including CC-1A, SG-1A and SG-1B stimulated cell proliferation, while fractions extracted under hot conditions (95 °C), including CC-3A, CC-2B and A. devoniensis (AD-3A), inhibited cell proliferation after 48 h. Furthermore, RAW264.7 cells treated with the fractions CC-3A, AD-1A, and SG-2A significantly reduced LPS-stimulated NO secretion over 24 h. Phagocytosis was significantly improved by treatment with C. crispus (CC-2B, CC-3B) and A. devoniensis (AD-3A) fractions. RAW264.7 cells treated with the CC-2A and SG-1A fractions showed elevated TGF-β1 expression without affecting TNF-α expression at 24 h. Polysaccharide fractions of A. devoniensis (ι/κ hybrid carrageenan; AD-2A, AD-3A) showed the highest anti-coagulation activity. CC-2A and SG-1A fractions enhanced various bioactivities, suggesting they are candidates for skin-health applications. The carrageenan fractions (CC-3A: λ-, μ-carrageenan, SG-2A: ν-, ι-carrageenan) tested herein showed great potential for developing anti-inflammatory and upscaled skin-health applications.
Collapse
Affiliation(s)
- Amal D Premarathna
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| | - Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ontario K1H 8M5, Canada
| | - Vitalijs Rjabovs
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Institute of Technology of Organic Chemistry, Riga Technical University, Paula Valdena iela 3/7, LV-1048 Riga, Latvia
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ontario K1H 8M5, Canada
| | - Alan T Critchley
- Verschuren Centre for Sustainability in Energy and Environment, Sydney, NS B1M 1A2, Canada
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
5
|
Torres-Mansilla A, Hincke M, Voltes A, López-Ruiz E, Baldión PA, Marchal JA, Álvarez-Lloret P, Gómez-Morales J. Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers (Basel) 2023; 15:polym15061342. [PMID: 36987123 PMCID: PMC10057008 DOI: 10.3390/polym15061342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The physicochemical features of the avian eggshell membrane play an essential role in the process of calcium carbonate deposition during shell mineralization, giving rise to a porous mineralized tissue with remarkable mechanical properties and biological functions. The membrane could be useful by itself or as a bi-dimensional scaffold to build future bone-regenerative materials. This review focuses on the biological, physical, and mechanical properties of the eggshell membrane that could be useful for that purpose. Due to its low cost and wide availability as a waste byproduct of the egg processing industry, repurposing the eggshell membrane for bone bio-material manufacturing fulfills the principles of a circular economy. In addition, eggshell membrane particles have has the potential to be used as bio-ink for 3D printing of tailored implantable scaffolds. Herein, a literature review was conducted to ascertain the degree to which the properties of the eggshell membrane satisfy the requirements for the development of bone scaffolds. In principle, it is biocompatible and non-cytotoxic, and induces proliferation and differentiation of different cell types. Moreover, when implanted in animal models, it elicits a mild inflammatory response and displays characteristics of stability and biodegradability. Furthermore, the eggshell membrane possesses a mechanical viscoelastic behavior comparable to other collagen-based systems. Overall, the biological, physical, and mechanical features of the eggshell membrane, which can be further tuned and improved, make this natural polymer suitable as a basic component for developing new bone graft materials.
Collapse
Affiliation(s)
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Ana Voltes
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Department of Health Sciences, Campus de las Lagunillas S/N, University of Jaén, 23071 Jaén, Spain
| | - Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Pedro Álvarez-Lloret
- Departamento de Geología, Universidad de Oviedo, 33005 Asturias, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos IACT–CSIC–UGR, Avda. Las Palmeras, No. 4, Armilla, 18100 Granada, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| |
Collapse
|
6
|
Emami S, Ebrahimi M. Bioactive wound powders as wound healing dressings and drug delivery systems. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Chi Y, Lin M, Zuo D, Wang H, Chi Y. Eggshell waste separation process assisted with pressure-vacuum: Process conditions and optimization. J Food Sci 2023; 88:356-366. [PMID: 36533937 DOI: 10.1111/1750-3841.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Eggshells and eggshell membranes have high-value recycling applications and have been widely used in pharmaceutical, chemical, and food research. The separation of eggshells and eggshell membranes is a prerequisite to efficiently using both. Therefore, the pressure-vacuum experiment equipment was designed. In this study, research on the separation of eggshells and eggshell membranes from waste eggshells using the pressure-vacuum experiment equipment was carried out. The flash evaporation experiment process controlled the experimental factors to obtain a sufficient moisture content between the eggshell and eggshell membrane with vigorous flash evaporation. The effects of experimental factors such as superheat (5-10°C), temperature (50-70°C), initial pressure (0.6-0.8 MPa), pressurization time (0-40 min), and particle size (6-8 mm) on the separation rate were investigated in the pressure-vacuum experiment process. Through single-factor and orthogonal experiments, it was found that the separation rate was most affected by changes in temperature, initial pressure, and particle size, followed by the interaction of temperature and particle size. The experimental results suggested that the optimum separation of eggshell membranes from eggshells was achieved at higher superheat, higher temperature, higher initial pressure, medium pressurization time, and smaller particle size. Through optimization by response surface methodology, the optimal conditions for the separation of eggshells and eggshell membranes using the flash evaporation method were determined as 15°C of superheat, 70°C of temperature, 0.8 MPa of initial pressure, and 6 mm of particle size. Flash evaporation method is an effective and environmentally friendly method, which provides a new solution for the recycling of waste eggshells. PRACTICAL APPLICATION: In this study, pressure-vacuum experiment equipment was utilized to reuse of waste eggshells, and an innovative and environmentally friendly method of eggshell membrane and eggshell separation was established. The pressure-vacuum experiment equipment has a simple structure and low energy consumption. The results of flash evaporation experiments are instructive for further in-depth studies on the separation of eggshells and eggshell membranes. Furthermore, the separation of eggshells and egg membranes by flash evaporation is of great research value. Most importantly, the separated eggshells and eggshell membrane are available for high-value applications in food, chemical, and biological fields.
Collapse
Affiliation(s)
- Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Mengmeng Lin
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Daming Zuo
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Hailing Wang
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Dhasmana A, Malik S, Sharma AK, Ranjan A, Chauhan A, Harakeh S, Al-Raddadi RM, Almashjary MN, Bawazir WMS, Haque S. Fabrication and evaluation of herbal beads to slow cell ageing. Front Bioeng Biotechnol 2022; 10:1025405. [PMID: 36568310 PMCID: PMC9773394 DOI: 10.3389/fbioe.2022.1025405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Several therapies and cosmetics are available commercially to prevent or delay cell ageing, which manifests as premature cell death and skin dullness. Use of herbal products such as Aloe vera, curcumin, vitamin C-enriched natural antioxidant, and anti-inflammatory biomolecules are potential ways to prevent or delay ageing. Eggshell membrane (ESM) is also a rich source of collagen; glycosaminoglycans (GAGs) also play an essential role in healing and preventing ageing. It is important to use an extended therapeutic process to prolong the effectiveness of these products, despite the fact that they all have significant anti-ageing properties and the ability to regenerate healthy cells. Encapsulated herbal components are therefore designed to overcome the challenge of ensuring continued treatment over time to prolong the effects of a bioactive component after in situ administration. To study their synergistic effects on a cellular level, alginate, Aloe vera, and orange peel extract were encapsulated in bio-polymeric foaming beads and modified with eggshell membrane protein (ESMP) at various concentrations (1 gm, 2 gm, and 5 gm): (A-Av-OP, A-Av-OP-ESMP1, ESMP2, and ESMP3). Analysis of the structural and functional properties of foaming beads showed interconnected 3D porous structure, a surface-functionalized group for entrapment of ESMP, and a significant reduction in pore size (51-35 m) and porosity (80%-60%). By performing DPPH assays, HRBC stabilization assays, and antibacterial tests, the beads were assessed as a natural anti-ageing product with sustained release of molecules effective against inflammatory response, oxidative stress, and microbial contamination. MTT assays were conducted using in vitro cell cultures to demonstrate cytocompatibility (in mouse 3T3 fibroblast cells) and cytotoxicity (in human carcinoma HeLa cells). Our study demonstrates that bio-polymeric ESMP beads up to 2 g (A-Av-OP-ESMP2) are practical and feasible natural remedies for suspending defective cell pathways, preventing cell ageing, and promoting healthy cell growth, resulting in a viable and practical natural remedy or therapeutic system.
Collapse
Affiliation(s)
- Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Amit Kumar Sharma
- Department of Biotechnology, Dr KNMIPER, Modinagar, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajaa M. Al-Raddadi
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Mohammed S. Bawazir
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
9
|
Kulshreshtha G, Diep T, Hudson HA, Hincke MT. High value applications and current commercial market for eggshell membranes and derived bioactives. Food Chem 2022; 382:132270. [PMID: 35149473 DOI: 10.1016/j.foodchem.2022.132270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
Chicken eggshell membrane (ESM) is a highly insoluble structure that is greatly stabilized by extensive desmosine, isodesmosine, and disulfide cross-linkages. The ESM possesses numerous biological functions including anti-microbial, anti-inflammatory, anti-wrinkle, and antioxidant activities. The ESM is mainly proteinaceous; proteomics and bioinformatics analysis of ESM has identified > 500 proteins, such as collagens, glycoproteins, avian beta-defensins, and lysozyme. ESM also contains significant amounts of carbohydrate, including hyaluronic acid (HA). In general, HA plays an important role in tissue hydration and cellular mechanisms such as growth, differentiation, and transport, and has diverse health and medical applications. Despite ESM being rich in important bioactive compounds, it is often considered as a waste product of the egg-breaking industry and is under-utilized. A major challenge for the successful commercial exploitation of ESM and bioactive constituents is its limited solubility and bioavailability due to cross-linkages of ESM fibers. Various processing and extraction methods are employed to overcome these limitations and improve the production of HA and collagen-based ESM formats. Moreover, we believe that there is a wide scope to exploit ESM for novel applications, leading to new intellectual property (IP) and patenting opportunities. This review presents an overview of scientific background, IP landscape and current commercial market for ESM and derived bioactives including collagens and HA. A detailed literature survey is provided for each area of interest. We analyze regulatory guidelines for ESM, contrasting quality control / microbial safety assessment in cosmetics and personal care products (hazard based) with that of the food industry (risk-based). New perspectives for upcycling of ESM waste to commercially viable high-value biomaterials as nutraceutical supplements and as cosmetics ingredients are discussed. This overview of ESM separation techniques and applications could form the basis for directed research and product development in order to exploit the unique bioactivities of ESM.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada
| | - Ty Diep
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, Ontario K0E 1M0, Canada
| | - Helen-Anne Hudson
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, Ontario K0E 1M0, Canada
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| |
Collapse
|
10
|
Chen X, Chen Y, Fu B, Li K, Huang D, Zheng C, Liu M, Yang DP. Eggshell membrane-mimicking multifunctional nanofiber for in-situ skin wound healing. Int J Biol Macromol 2022; 210:139-151. [PMID: 35537580 DOI: 10.1016/j.ijbiomac.2022.04.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
Eggshell membrane is a naturally-occurring protective barrier layer for chickens' incubation and shows the close similarity with extracellular matrix. To fully explore and utilize its' structure and active components via a mimicking way will be of great interest for wounds healing. Herein, the well-dispersed CuS nanoparticles were prepared by using eggshell membranes as templates with strong near-infrared absorption and photothermal properties. Furthermore, the as-prepared solution was combined with polyvinyl pyrrolidone and chitosan-derived fluorescent carbon dots for the mimetic synthesis of multifunctional nanofibrous membrane by a hand-held electrospinning device, which has the merits of in-situ operation, the extracellular matrix (ECM)-like architecture, hemostatic, radical scavenging, antibacterial, as well as accelerated healing of skin injury, etc. The electrospun-nanofiber membrane with optimal addition of 100 mg/L CuS nanoparticles was confirmed to be noncytotoxic on human fibroblasts and showed strong antibacterial activities against S. aureus and E. coli under NIR irradiation (980 nm). In addition, the radical scavenging ability was also proved by DPPH experiments. The animal experiments revealed that the nanofiber membrane could accelerate the wound healing process. The work lays down a simple and environmentally-friendly approach for the fabrication and development of promising wound healing materials in skin tissue engineering applications.
Collapse
Affiliation(s)
- Xiaofang Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yaqin Chen
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China
| | - Bofei Fu
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China
| | - Kunjie Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Donghong Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Chaohui Zheng
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Minghuan Liu
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China.
| | - Da-Peng Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China.
| |
Collapse
|
11
|
Aggarwal A, Sah MK. Process optimization for extraction of avian eggshell membrane derived collagen for tissue engineering applications. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The avian eggshell membranes’ composition depicts close resemblance with the extracellular matrix of the cells, and therefore being widely employed as potential biomaterials for tissue engineering applications. However, the optimization of process conditions for collagen extraction, the main constituent of eggshell membranes is still challenging. In the present study, extraction of collagen was performed by an enzymatic method optimized through the one-factor-at-a-time (OFAT) technique for three parameters viz. pepsin concentration, treatment time and pH. The process optimization resulted in the maximum yield of 56% collagen with 350 U/mg pepsin concentration at pH 3 treated for 9 days, not reported yet. The collagen extraction was confirmed by OD at 232 nm; and its viscoelasticity behaviour at pH 5. The physico–chemical characterization of extracted collagen with FESEM, ATR-FTIR, surface roughness analysis and contact angle measurement revealed the morphological and topological alteration during the collagen extraction. The process optimization and characterization of eggshell membrane derived collagen can aid in the significant biomaterials development for tissue regeneration.
Collapse
Affiliation(s)
- Aakriti Aggarwal
- Department of Biotechnology , Dr. B. R. Ambedkar National Institute of Technology , Jalandhar , Punjab 144011 , India
| | - Mahesh Kumar Sah
- Department of Biotechnology , Dr. B. R. Ambedkar National Institute of Technology , Jalandhar , Punjab 144011 , India
| |
Collapse
|
12
|
Mahdavi S, Amirsadeghi A, Jafari A, Niknezhad SV, Bencherif SA. Avian Egg: A Multifaceted Biomaterial for Tissue Engineering. Ind Eng Chem Res 2021; 60:17348-17364. [PMID: 35317347 PMCID: PMC8935878 DOI: 10.1021/acs.iecr.1c03085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most components in avian eggs, offering a natural and environmentally friendly source of raw materials, hold great potential in tissue engineering. An avian egg consists of several beneficial elements: the protective eggshell, the eggshell membrane, the egg white (albumen), and the egg yolk (vitellus). The eggshell is mostly composed of calcium carbonate and has intrinsic biological properties that stimulate bone repair. It is a suitable precursor for the synthesis of hydroxyapatite and calcium phosphate, which are particularly relevant for bone tissue engineering. The eggshell membrane is a thin protein-based layer with a fibrous structure and is constituted of several valuable biopolymers, such as collagen and hyaluronic acid, that are also found in the human extracellular matrix. As a result, the eggshell membrane has found several applications in skin tissue repair and regeneration. The egg white is a protein-rich material that is under investigation for the design of functional protein-based hydrogel scaffolds. The egg yolk, mostly composed of lipids but also diverse essential nutrients (e.g., proteins, minerals, vitamins), has potential applications in wound healing and bone tissue engineering. This review summarizes the advantages and status of each egg component in tissue engineering and regenerative medicine, but also covers their current limitations and future perspectives.
Collapse
Affiliation(s)
- Shahriar Mahdavi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Arman Jafari
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| |
Collapse
|
13
|
Ahmed TAE, Udenigwe CC, Gomaa A. Editorial: Biotechnology and Bioengineering Applications for Egg-Derived Biomaterials. Front Bioeng Biotechnol 2021; 9:756058. [PMID: 34616721 PMCID: PMC8488131 DOI: 10.3389/fbioe.2021.756058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ahmed Gomaa
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.,Nutrition and Food Science Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
Shi Y, Zhou K, Li D, Guyonnet V, Hincke MT, Mine Y. Avian Eggshell Membrane as a Novel Biomaterial: A Review. Foods 2021; 10:foods10092178. [PMID: 34574286 PMCID: PMC8466381 DOI: 10.3390/foods10092178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
The eggshell membrane (ESM), mainly composed of collagen-like proteins, is readily available as a waste product of the egg industry. As a novel biomaterial, ESM is attractive for its applications in the nutraceutical, cosmetic, and pharmaceutical fields. This review provides the main information about the structure and chemical composition of the ESM as well as some approaches for its isolation and solubilization. In addition, the review focuses on the role and performance of bioactive ESM-derived products in various applications, while a detailed literature survey is provided. The evaluation of the safety of ESM is also summarized. Finally, new perspectives regarding the potential of ESM as a novel biomaterial in various engineering fields are discussed. This review provides promising future directions for comprehensive application of ESM.
Collapse
Affiliation(s)
- Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Z.); (D.L.)
- Correspondence: (Y.S.); (Y.M.)
| | - Kai Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Z.); (D.L.)
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.Z.); (D.L.)
| | - Vincent Guyonnet
- FFI Consulting Ltd., 2488 Lyn Road, Brockville, ON K6V 5T3, Canada;
| | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada;
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Correspondence: (Y.S.); (Y.M.)
| |
Collapse
|
15
|
Xiao N, Huang X, He W, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. A review on recent advances of egg byproducts: Preparation, functional properties, biological activities and food applications. Food Res Int 2021; 147:110563. [PMID: 34399539 DOI: 10.1016/j.foodres.2021.110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
The rapid development of egg industries produced vast byproducts that have not been effectively used. In this paper, the comprehensive utilization of egg byproducts was reviewed. Protein extraction and enzymatic hydrolysis were the main used ways for recycle of egg byproducts. The fact that eggshell membrane could accelerate would healing and improve facial skin of healthy people for 12 weeks was found. However, salted egg white had poor functional properties owing to high salt and ultrafiltration was an effective technology to remove 92.93% of salt. Moreover, Defatted yolk protein had the great potential to be used as food additives and functional foods. Other egg byproducts such as egg inhibitor and eggshells also were discussed. The novel applications of egg byproducts in the food field included food additives, feeds, food packaging materials and nutraceuticals based on current knowledge, but the proportion needed to be improved. This paper would provide a new insight for comprehensive utilization of egg byproducts.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi Huang
- National Research and Development Center for Egg Processing, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
16
|
Ahmed TAE, Younes M, Wu L, Hincke MT. A Survey of Recent Patents in Engineering Technology for the Screening, Separation and Processing of Eggshell. Front Bioeng Biotechnol 2021; 9:677559. [PMID: 34017829 PMCID: PMC8130897 DOI: 10.3389/fbioe.2021.677559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
The chicken egg is a well-known complete food of human daily consumption which serves as a cost-effective, high-quality nutrient resource. About 30% of table eggs are directed to breaker plants in developed countries, leading to the generation of substantial eggshell (ES) waste, which is increasingly explored for potential value-added applications. The number of patents describing ES-based applications has increased dramatically in recent years. This review provides insight into the most recent patents published between 2015 and 2020, with focus on different engineering technologies for the screening, separation, and processing of ES. Screening technologies include detection of ES surface spots and glossiness, ES cracks, and mechanical properties, along with identification of chicken breed and enumeration of surface bacterial count. Collection and separation technologies describe separation strategies of ES from egg white (EW), egg yolk (EY), liquid egg, eggshell membrane (ESM), hatchlings, and cooked egg. Separation of ES from liquid eggs utilizes gravity, rotational forces, or air pressure. Processing of ES involves washing and sterilization along with cutting, crushing, and pulverization technologies that enable the collection of ES suitable for value-added applications. In addition, ES carving (mechanical and laser) opens up the realm of artwork and decoration. Furthermore, intact ES can be utilized for food serving. The exponential increase in innovative screening, separation, collection, and processing technologies reflects industrial interest to upscale low-value ES waste material, and is a first crucial step in the emergence of advanced technologies that exploit the biomedical, chemical, engineering, and environmental applications for ES.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Manar Younes
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ling Wu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Ghorbanzadeh Sheish S, Emadi R, Ahmadian M, Sadeghzade S, Tavangarian F. Fabrication and Characterization of Polyvinylpyrrolidone-Eggshell Membrane-Reduced Graphene Oxide Nanofibers for Tissue Engineering Applications. Polymers (Basel) 2021; 13:913. [PMID: 33809630 PMCID: PMC8002296 DOI: 10.3390/polym13060913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
One of the best methods to prevent wound infection and speed up wound healing is wound dressing based on nanofiber-polymer scaffolds, which have acceptable antimicrobial performance and appropriate skin regeneration capabilities. In this paper, the electrospinning method was applied to synthesize the polyvinylpyrrolidone-acrylic acid hydrogel (PVPA)-eggshell membrane (ESM)-reduced graphene oxide (rGO) nanosheets nanocomposite dressings with different reduced graphene oxide contents (0, 0.5, 1, and 2 wt.%). Thus, smooth nanofibers were fabricated, including a high amount of rGO, which reduced the fiber diameter. Based on the results, rGO played an important role in water impermeability. The results showed that by increasing the rGO concentration from 0.5 to 2 wt%, the contact angle value increased persistently. Results showed that compared to PVPA-ESM, the mechanical strength and strain of PVPA-ESM/1 wt% rGO significantly enhanced 28% and 23%, respectively. Incorporation of 1 wt% rGO enhanced swelling ratio from 875% for PVPA-ESM to 1235% after 420 min, while increasing the rGO to 2 wt% increased the degradation rate of the composites. According to the in vitro cell culture studies, PVPA-ESM wound dressings with 0.5-1 wt% rGO content enhanced PC12 cell viability compared to the wound dressings without rGO nanosheets. Generally, rGO-loaded PVPA-ESM nanofiber wound dressing can be considered as a potential candidate to be used in skin regeneration applications.
Collapse
Affiliation(s)
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (R.E.); (M.A.)
| | - Mehdi Ahmadian
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (R.E.); (M.A.)
| | - Sorour Sadeghzade
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (R.E.); (M.A.)
- Mechanical Engineering Program, School of Science, Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA
| | - Fariborz Tavangarian
- Mechanical Engineering Program, School of Science, Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA
| |
Collapse
|
18
|
Baláž M, Boldyreva EV, Rybin D, Pavlović S, Rodríguez-Padrón D, Mudrinić T, Luque R. State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry. Front Bioeng Biotechnol 2021; 8:612567. [PMID: 33585413 PMCID: PMC7873488 DOI: 10.3389/fbioe.2020.612567] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Eggshell waste is among the most abundant waste materials coming from food processing technologies. Despite the unique properties that both its components (eggshell, ES, and eggshell membrane, ESM) possess, it is very often discarded without further use. This review article aims to summarize the recent reports utilizing eggshell waste for very diverse purposes, stressing the need to use a mechanochemical approach to broaden its applications. The most studied field with regards to the potential use of eggshell waste is catalysis. Upon proper treatment, it can be used for turning waste oils into biodiesel and moreover, the catalytic effect of eggshell-based material in organic synthesis is also very beneficial. In inorganic chemistry, the eggshell membrane is very often used as a templating agent for nanoparticles production. Such composites are suitable for application in photocatalysis. These bionanocomposites are also capable of heavy metal ions reduction and can be also used for the ozonation process. The eggshell and its membrane are applicable in electrochemistry as well. Due to the high protein content and the presence of functional groups on the surface, ESM can be easily converted to a high-performance electrode material. Finally, both ES and ESM are suitable for medical applications, as the former can be used as an inexpensive Ca2+ source for the development of medications, particles for drug delivery, organic matrix/mineral nanocomposites as potential tissue scaffolds, food supplements and the latter for the treatment of joint diseases, in reparative medicine and vascular graft producing. For the majority of the above-mentioned applications, the pretreatment of the eggshell waste is necessary. Among other options, the mechanochemical pretreatment has found an inevitable place. Since the publication of the last review paper devoted to the mechanochemical treatment of eggshell waste, a few new works have appeared, which are reviewed here to underline the sustainable character of the proposed methodology. The mechanochemical treatment of eggshell is capable of producing the nanoscale material which can be further used for bioceramics synthesis, dehalogenation processes, wastewater treatment, preparation of hydrophobic filters, lithium-ion batteries, dental materials, and in the building industry as cement.
Collapse
Affiliation(s)
- Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - Elena V. Boldyreva
- Department of Solid State Chemistry, Novosibirsk State University, Novosibirsk, Russia
- Boreskov Institute of Catalysis, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry Rybin
- Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
- Mezomax Inc., San Francisco, CA, United States
| | - Stefan Pavlović
- Department of Catalysis and Chemical Engineering, University of Belgrade – Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Belgrade, Serbia
| | | | - Tihana Mudrinić
- Department of Catalysis and Chemical Engineering, University of Belgrade – Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Cordoba, Spain
| |
Collapse
|