1
|
Xu Y, Zhu B, Li Q, Sha F, Baryshnikov G, He L, Feng Y, Tang J, Wei Y, Li C, Wu X, Ågren H, Xie Y. Pyrrolylmethylene Appended Corrorin: Peripheral Coordination and Transformation to Pyridyl Incorporated Hemiporphycene Analogue. Org Lett 2023; 25:1793-1798. [PMID: 36881833 DOI: 10.1021/acs.orglett.3c00595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A pyrrolylmethylene appended corrorin 1 was synthesized and coordinated with [Rh(CO)2Cl]2 to afford 1-Rh with unique RhI-η2-CC bonding in addition to the coordination of the dipyrrin-like unit and a carbonyl ligand. Further oxidation of 1 afforded 2, exhibiting a hydrocorrorinone core, and it can be further transformed into pyrrolo[3,2-c]pyridine incorporated hemiporphycene analogue 3 upon treatment with HOAc. The side chain modifies the reactivity of corrorin and effectively tunes the NIR absorption of the resulting porphyrinoids.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Zhu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Sha
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, SE-601 74 Norrköping, Sweden
| | - Lanka He
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Feng
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingxuan Tang
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Wei
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Budyka MF, Gavrishova TN, Li VM, Potashova NI, Fedulova JA. Emissive and reactive excimers in a covalently-linked supramolecular multi-chromophoric system with a balanced rigid-flexible structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120565. [PMID: 34753706 DOI: 10.1016/j.saa.2021.120565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
A novel multi-chromophoric system, triad, in which two styrylbenzoquinoline (SBQ) photochromes are connected by a balanced rigid-flexible linker comprising 2,3-naphthylene framework (a residue of 3-oxy-2-naphthoic acid) and tetramethylene groups, was designed and synthesized to study an excimer formation in the excited state. The 1H NMR data testified that triad exists in solution as folded conformers with asymmetric parallel-displaced SBQ units. Under light irradiation, in the triad, competitive photoisomerization and [2 + 2] photocycloaddition reactions were observed, both reactions being reversible. The photocycloaddition resulted in a tetrasubstituted cyclobutane. The red-shifted fluorescence spectrum and the appearance of a long-lived component in the triad fluorescence decay indicated formation of an 'emissive' excimer. The photocycloaddition is assumed to occur in a 'reactive' excimer, in which the ethylene groups of the SBQ photochromes are located at a distance sufficient for the formation of the σ-bonds between them. Quantum-chemical density functional theory (DFT) calculations at M06-2X/6-31G* level predicted the existence of the triad conformers with π-stacking interaction of SBQ photochromes, the structure of which is pre-organized for the excimer formation and photocycloaddition. For the first time, both emissive and reactive excimers were experimentally observed in the multi-chromophoric system with two diarylethylene photochromes undergoing [2 + 2] photocycloaddition.
Collapse
Affiliation(s)
- Mikhail F Budyka
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation.
| | - Tatiana N Gavrishova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Vitalii M Li
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Natalia I Potashova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation
| | - Julia A Fedulova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
3
|
Abstract
Chiral molecules possess enantiomers that have non-superimposable chemical structures but exhibit identical nuclear magnetic resonance (NMR) spectra. This feature prevents the use of NMR spectroscopic methods for the determination of enantiomeric excesses (ee) of chiral molecules, using simple mixtures of their enantiomers. Recently, however, it was reported that the addition of a symmetrical prochiral molecule (a reporter or host) into a solution of chiral analyte can lead to estimation of ee through interactions involving rapid exchange of the chiral analyte (guest) in the formed host–guest complex. This is due to the ee-dependent splitting of NMR resonances of the prochiral host molecule based on averaging the chemical shift non-equivalency caused by the presence of a chiral guest. The mechanism is not dependent on diastereomer formation, and 1:1 host–guest complexes can also show ee-dependent NMR peak splitting. Prochiral molecules capable of ee sensing using the NMR technique are now referred to as so-called prochiral solvating agents (pro-CSAs). pro-CSAs represent a family of reagents distinct from the commonly used NMR chiral derivatizing reagents (where chiral auxiliaries are used to derivatize enantiomers to diastereomers) or chiral solvating agents (where chiral auxiliaries interact in an asymmetric manner with analyte enantiomers). pro-CSA methods are unique since neither pro-CSA nor NMR contains chiral factors, making the technique neutral with respect to chirality. Here, we review our recent work on this matter involving several different nominally achiral receptor molecules whose unique guest binding properties and solution characteristics (especially with regard to NMR spectroscopy) allow for the estimation of ee in the corresponding chiral guests.
Collapse
|
5
|
Benitz A, Thomas MB, Silva I, Nesterov VN, Verbeck GF, D'Souza F. Photoinduced Electron Transfer in Axially Coordinated Supramolecular Zinc Tetrapyrrole Bis(styryl)BODIPY Donor‐Acceptor Conjugates. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alejandro Benitz
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Michael B. Thomas
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Imesha Silva
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Vladimir N. Nesterov
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Guido F. Verbeck
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203–5017 USA
| |
Collapse
|