1
|
Scott KM, Davenport BL, Vasylevskyi S, Que EL. Improved Redox-Responsive Cobalt(II) 19F Magnetic Resonance Imaging Agents through Addition of Hydrogen Bond Donors. Inorg Chem 2025. [PMID: 40434316 DOI: 10.1021/acs.inorgchem.5c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Redox regulation through reactive oxygen species (ROS) is an essential component of the inflammatory response. ROS can be sensed by 19F magnetic resonance spectroscopy and imaging using redox-active cobalt macrocycles with an appended fluorine tag. The sensitivity of these cobalt complexes was investigated by altering the identity of the oxygen donor (hydroxypropyl, carboxylate, dimethyl amide, and acetamide) attached to the triazacyclononane scaffold. A distinct shift in the 19F MR frequency between the Co2+ and Co3+ states (6-10 ppm) allows for robust imaging of the probes before and after oxidation using selective pulse sequences. Of these complexes, [Co(II)HP]2+ exhibited an enhanced sensitivity to ROS when comparing burst kinetics and steady state oxidation through the glucose oxidase enzyme (GOX). This sensitivity corresponded with an increased fractional q value and enhanced interactions between Co2+ and 17O nuclei, which are indicative of a strong hydrogen bonding network in the secondary coordination sphere.
Collapse
Affiliation(s)
- Kathleen M Scott
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Brooke L Davenport
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Serhii Vasylevskyi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
2
|
Garda Z, Szeremeta F, Tóth CN, Bunda S, Pifferi C, Clémençon R, Même S, Tircsó G, Tóth É. Relaxation-Based In Vivo Discrimination of Oxidized and Reduced States of a Redox-Switchable 19F MRI Probe. J Am Chem Soc 2025; 147:18017-18024. [PMID: 40368834 DOI: 10.1021/jacs.5c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
MRI assessment of the tissue redox state is important for revealing and understanding various pathologies, and redox-responsive imaging probes capable of generating discrete and quantifiable signals in both their reduced and oxidized forms can provide enhanced detection reliability. The small fluorinated, redox-active FeL1 chelate is a prototype of such agents. L1 forms stable and inert complexes with both Fe2+ and Fe3+ ions, and the redox potential of the Fe3+L1/Fe2+L1 couple (+240 mV vs NHE) is adapted to biological redox sensing. Fe2+L1 undergoes instantaneous oxidation in the presence of H2O2, and Fe3+L1 is reduced by cysteine, glutathione, and ascorbate. Fe2+L1 and Fe3+L1 have very different proton relaxivities (0.1 mM-1 s-1 and 2.83 mM-1 s-1, respectively, 60 MHz, 298 K), as well as 19F relaxation times (T1 = 71-130 ms; T2 = 60-117 ms and T1 = 2.43 ms; T2 = 1.81 ms, respectively, 400 MHz, 298 K), in accordance with the different paramagnetic relaxation enhancement capacity of the two iron redox states. Upon application of specific MRI pulse sequences adapted to the relaxation rate (RARE for Fe2+L1 and UTE for Fe3+L1, combined with appropriate acquisition parameters), both redox forms are detected in 19F MR phantom images with good sensitivity and signal-to-noise ratios linearly dependent on probe concentration. Fe2+L1 and Fe3+L1 can be readily visualized and unambiguously discriminated based on their 19F relaxation times in living mice, following intramuscular injection. The possibility of monitoring the redox switch in 1H MRI as well is an additional advantage of this bioresponsive probe.
Collapse
Affiliation(s)
- Zoltán Garda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010 Debrecen, Hungary
| | - Frédéric Szeremeta
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Csilla Noémi Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Szilvia Bunda
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010 Debrecen, Hungary
| | - Carlo Pifferi
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Rudy Clémençon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010 Debrecen, Hungary
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| |
Collapse
|
3
|
Chen L, Jiang Y, Xiong N, Fan Y, Lin H, Gao J. Sensitive Multichannel 19F Magnetic Resonance Imaging Enabled by Paramagnetic Fluorinated Ionic Liquid-Based Probes. ACS NANO 2025; 19:9061-9069. [PMID: 40066732 DOI: 10.1021/acsnano.4c17959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Owing to its negligible biological background and high magnetic resonance sensitivity, 19F magnetic resonance imaging (MRI) has emerged as a competitive complement for 1H MRI, which is already widely used in biomedical research and clinical practice. The performance of 19F MRI is greatly reliant on imaging probes, the development of which poses considerable demands on 19F sources. Fluorinated ionic liquids (FILs) have recently attracted increasing attention as alternative 19F sources because of their good aqueous solubility, ease of chemical modification, and high fluorine contents. However, the imaging performance of FIL-based probes is significantly restricted by their unfavorable 19F relaxation times. Herein, we developed a strategy to modulate the 19F relaxation times (including both T1 and T2) of FILs by exploiting the paramagnetic relaxation enhancement effect of Mn2+ ions to promote their imaging capacity. The 19F relaxation times of three FILs including EMIMBF4, BMIMOTf, and BMIMPF6 are appropriately tuned with paramagnetic Mn2+ ions at optimized concentrations, resulting in significant signal enhancement over 5-fold. We further utilized liposils to encapsulate these FILs with Mn2+ ions to construct 19F MRI probes, which enables fast and clear 19F MRI as illustrated by a series of in vivo experiments. Moreover, we made a 19F MRI probe containing all three FILs and Mn2+ ions at the optimized concentration, whose capacity for multiplexed 19F MRI is also validated with in vivo experiments. Our study demonstrates the promising potential of paramagnetic FIL-based probes for in vivo "hot spot" 19F MRI, and more importantly, the feasibility of relaxation modulation for the construction of high-performance 19F MRI probes.
Collapse
Affiliation(s)
- Limin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhang Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nan Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| |
Collapse
|
4
|
Yue P, Nagendraraj T, Wang G, Jin Z, Angelovski G. The role of responsive MRI probes in the past and the future of molecular imaging. Chem Sci 2024; 15:20122-20154. [PMID: 39611034 PMCID: PMC11600131 DOI: 10.1039/d4sc04849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic resonance imaging (MRI) has become an indispensable tool in biomedical research and clinical radiology today. It enables the tracking of physiological changes noninvasively and allows imaging of specific biological processes at the molecular or cellular level. To this end, bioresponsive MRI probes can greatly contribute to improving the specificity of MRI, as well as significantly expanding the scope of its application. A large number of these sensor probes has been reported in the past two decades. Importantly, their development was done hand in hand with the ongoing advances in MRI, including emerging methodologies such as chemical exchange saturation transfer (CEST) or hyperpolarised MRI. Consequently, several approaches on successfully using these probes in functional imaging studies have been reported recently, giving new momentum to the field of molecular imaging, also the chemistry of MRI probes. This Perspective summarizes the major strategies in the development of bioresponsive MRI probes, highlights the major research directions within an individual group of probes (T 1- and T 2-weighted, CEST, fluorinated, hyperpolarised) and discusses the practical aspects that should be considered in designing the MRI sensors, up to their intended application in vivo.
Collapse
Affiliation(s)
- Ping Yue
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Thavasilingam Nagendraraj
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Ziyi Jin
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| |
Collapse
|
5
|
Garda Z, Szeremeta F, Quin O, Molnár E, Váradi B, Clémençon R, Même S, Pichon C, Tircsó G, Tóth É. Small, Fluorinated Mn 2+ Chelate as an Efficient 1H and 19F MRI Probe. Angew Chem Int Ed Engl 2024; 63:e202410998. [PMID: 39083573 DOI: 10.1002/anie.202410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
We explore the potential of fluorine-containing small Mn2+ chelates as alternatives to perfluorinated nanoparticles, widely used as 19F MRI probes. In MnL1, the cyclohexanediamine skeleton and two piperidine rings, involving each a metal-coordinating amide group and an appended CF3 moiety, provide high rigidity to the complex. This allows for good control of the Mn-F distance (rMnF=8.2±0.2 Å determined from 19F relaxation data), as well as for high kinetic inertness (a dissociation half-life of 1285 h is estimated for physiological conditions). The paramagnetic Mn2+ leads to a ~150-fold acceleration of the longitudinal 19F relaxation, with moderate line-broadening effect, resulting in T2/T1 ratios of 0.8 (9.4 T). Owing to its inner sphere water molecule, MnL1 is a good 1H relaxation agent as well (r1=5.36 mM-1 s-1 at 298 K, 20 MHz). MnL1 could be readily visualized in 19F MRI by using fast acquisition techniques, both in phantom images and living mice following intramuscular injection, with remarkable signal-to-noise ratios and short acquisition times. While applications in targeted imaging or cell therapy monitoring require further optimisation of the molecular structure, these results argue for the potential of such small, monohydrated and fluorinated Mn2+ complexes for combined 19F and 1H MRI detection.
Collapse
Affiliation(s)
- Zoltán Garda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Frédéric Szeremeta
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Océane Quin
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Enikő Molnár
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Balázs Váradi
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Rudy Clémençon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
- Inserm UMS 55 ART ARNm and LI2RSO, University of Orléans, F-45100, Orléans, France
- Institut Universitaire de France, 1 rue Descartes, F-75035, Paris, France
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| |
Collapse
|
6
|
Chen Q, Xiao H, Hu L, Huang Y, Cao Z, Shuai X, Su Z. 19F MRI/CEUS Dual Imaging-Guided Sonodynamic Therapy Enhances Immune Checkpoint Blockade in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401182. [PMID: 39051482 PMCID: PMC11423248 DOI: 10.1002/advs.202401182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Treatment of highly aggressive triple-negative breast cancer (TNBC) in the clinic is challenging. Here, a liposome nanodrug (LP@PFH@HMME) integrating imaging agents and therapeutic agents for bimodal imaging-guided sonodynamic therapy (SDT) is developed, which boosted immunogenicity to enable potent immunotherapy via immune checkpoint blockade (ICB) in TNBC. In the acidic tumor microenvironment (TME), LP@PFH@HMME undergoes "nano-to-micro" transformation due to a pH-responsive lipid fusion, which makes droplets much more sensitive to ultrasound (US) in contrast-enhanced ultrasound (CEUS) and SDT studies. The nanodrug demonstrates robust bimodal imaging ability through fluorine-19 magnetic resonance imaging (19F MRI) and CEUS bimodal imaging, and it exhibits excellent solubility in aqueous solution with relatively high 19F content and desirable long transverse relaxation time (T2 = 1.072 s), making it suitable for high-performance 19F MRI, in addition to effective accumulation of nanodrugs after tail vein injection. Thus, 19F MRI/CEUS dual imaging is achievable to show adequate time points for US irradiation of tumor sites to induce highly effective SDT, which produces abundant reactive oxygen species (ROS) triggering immunogenic cell death (ICD) to assist ICB-based immunotherapy. The combination treatment design of sonodynamic therapy with immunotherapy effectively inhibited TNBC growth and recurrence, highlighting the promise of multifunctional nanodrugs in treating TNBC.
Collapse
Affiliation(s)
- Qiu Chen
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Hong Xiao
- Department of Medical UltrasonicThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Lijun Hu
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Yongquan Huang
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| | - Zhong Cao
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
- Shenzhen International Institute for Biomedical ResearchLonghua DistrictShenzhenGuangdong518116P. R. China
| | - Xintao Shuai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Zhongzhen Su
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhai519000P. R. China
| |
Collapse
|
7
|
Anbu S, Kenning L, Stasiuk GJ. ATP-responsive Mn(II)-based T1 contrast agent for MRI. Chem Commun (Camb) 2023; 59:13623-13626. [PMID: 37902503 PMCID: PMC10644988 DOI: 10.1039/d3cc03430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
A novel diacetylpyridylcarbohydrazide-DAPyCOHz-based manganese(II) chelate with dipicolylamine/zinc(II) (DPA/Zn2+) arms (MnLDPA-Zn2) was developed for adenosine triphosphate (ATP) responsive magnetic resonance imaging (MRI) T1 contrast applications. Compound 2 shows enhanced relaxivity (r1 = 11.52 mM-1 s-1) upon selective ATP binding over other phosphates.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Departments of Chemistry and Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lawerence Kenning
- MRI Centre, Royal Infirmary Hospital NHS Trust, Anlaby Road, Hull, HU3 2JZ, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Fourth Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
8
|
Pinto SMA, Ferreira ARR, Teixeira DSS, Nunes SCC, Batista de Carvalho ALM, Almeida JMS, Garda Z, Pallier A, Pais AACC, Brett CMA, Tóth É, Marques MPM, Pereira MM, Geraldes CFGC. Fluorinated Mn(III)/(II)-Porphyrin with Redox-Responsive 1 H and 19 F Relaxation Properties. Chemistry 2023; 29:e202301442. [PMID: 37606898 DOI: 10.1002/chem.202301442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/23/2023]
Abstract
A new fluorinated manganese porphyrin, (Mn-TPP-p-CF3 ) is reported capable of providing, based on the Mn(III)/Mn(II) equilibrium, dual 1 H relaxivity and 19 F NMR response to redox changes. The physical-chemical characterization of both redox states in DMSO-d6 /H2 O evidenced that the 1 H relaxometric and 19 F NMR properties are appropriate for differential redox MRI detection. The Mn(III)-F distance (dMn-F =9.7-10 Å), as assessed by DFT calculations, is well tailored to allow for adequate paramagnetic effect of Mn(III) on 19 F T1 and T2 relaxation times. Mn-TPP-p-CF3 has a reversible Mn(II)/Mn(III) redox potential of 0.574 V vs. NHE in deoxygenated aqueous HEPES/ THF solution. The reduction of Mn(III)-TPP-p-CF3 in the presence of ascorbic acid is slowly, but fully reversed in the presence of air oxygen, as monitored by UV-Vis spectrometry and 19 F NMR. The broad 1 H and 19 F NMR signals of Mn(III)-TPP-p-CF3 disappear in the presence of 1 equivalent ascorbate replaced by a shifted and broadened 19 F NMR signal from Mn(II)-TPP-p-CF3 . Phantom 19 F MR images in DMSO show a MRI signal intensity decrease upon reduction of Mn(III)-TPP-p-CF3 , retrieved upon complete reoxidation in air within ~24 h. 1 H NMRD curves of the Mn(III)/(II)-TPP-p-CF3 chelates in mixed DMSO/water solvent have the typical shape of Mn(II)/Mn(III) porphyrins.
Collapse
Affiliation(s)
- Sara M A Pinto
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Ana R R Ferreira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Daniela S S Teixeira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Sandra C C Nunes
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Ana L M Batista de Carvalho
- Molecular Physical Chemistry R&D Unit Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
| | - Joseany M S Almeida
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- CEMMPRE, University of Coimbra, Pinhal de Marrocos, 3030-788, Coimbra, Portugal
| | - Zoltan Garda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Agnés Pallier
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Alberto A C C Pais
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Christopher M A Brett
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- CEMMPRE, University of Coimbra, Pinhal de Marrocos, 3030-788, Coimbra, Portugal
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Maria P M Marques
- Molecular Physical Chemistry R&D Unit Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
| | - Mariette M Pereira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Carlos F G C Geraldes
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
- CIBIT/ICNAS, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
9
|
Mo Y, Huang C, Liu C, Duan Z, Liu J, Wu D. Recent Research Progress of 19 F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol Rapid Commun 2023; 44:e2200744. [PMID: 36512446 DOI: 10.1002/marc.202200744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Visualization of biomolecules, cells, and tissues, as well as metabolic processes in vivo is significant for studying the associated biological activities. Fluorine magnetic resonance imaging (19 F MRI) holds potential among various imaging technologies thanks to its negligible background signal and deep tissue penetration in vivo. To achieve detection on the targets with high resolution and accuracy, requirements of high-performance 19 F MRI probes are demanding. An ideal 19 F MRI probe is thought to have, first, fluorine tags with magnetically equivalent 19 F nuclei, second, high fluorine content, third, adequate fluorine nuclei mobility, as well as excellent water solubility or dispersity, but not limited to. This review summarizes the research progresses of 19 F MRI probes and mainly discusses the impacts of structures on in vitro and in vivo imaging performances. Additionally, the applications of 19 F MRI probes in ions sensing, molecular structures analysis, cells tracking, and in vivo diagnosis of disease lesions are also covered in this article. From authors' perspectives, this review is able to provide inspirations for relevant researchers on designing and synthesizing advanced 19 F MRI probes.
Collapse
Affiliation(s)
- Yongyi Mo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Juan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
10
|
Kadakia RT, Ryan RT, Cooke DJ, Que EL. An Fe complex for 19F magnetic resonance-based reversible redox sensing and multicolor imaging. Chem Sci 2023; 14:5099-5105. [PMID: 37206407 PMCID: PMC10189869 DOI: 10.1039/d2sc05222a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
We report a first-in-class responsive, pentafluorosulfanyl (-SF5)-tagged 19F MRI agent capable of reversibly detecting reducing environments via an FeII/III redox couple. In the FeIII form, the agent displays no 19F MR signal due to paramagnetic relaxation enhancement-induced signal broadening; however, upon rapid reduction to FeII with one equivalent of cysteine, the agent displays a robust 19F signal. Successive oxidation and reduction studies validate the reversibility of the agent. The -SF5 tag in this agent enables 'multicolor imaging' in conjunction with sensors containing alternative fluorinated tags and this was demonstrated via simultaneous monitoring of the 19F MR signal of this -SF5 agent and a hypoxia-responsive agent containing a -CF3 group.
Collapse
Affiliation(s)
- Rahul T Kadakia
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Raphael T Ryan
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Daniel J Cooke
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| |
Collapse
|
11
|
Zhang C, Xu L, Nan B, Lu C, Liu H, Lei L, Yue R, Guan G, He M, Zhang XB, Song G. Dynamic-Reversible MRI Nanoprobe for Continuous Imaging Redox Homeostasis in Hepatic Ischemia-Reperfusion Injury. ACS NANO 2023; 17:9529-9542. [PMID: 37154230 DOI: 10.1021/acsnano.3c02265] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury accompanied by oxidative stress is responsible for postoperative liver dysfunction and failure of liver surgery. However, the dynamic non-invasive mapping of redox homeostasis in deep-seated liver during hepatic I/R injury remains a great challenge. Herein, inspired by the intrinsic reversibility of disulfide bond in proteins, a kind of reversible redox-responsive magnetic nanoparticles (RRMNs) is designed for reversible imaging of both oxidant and antioxidant levels (ONOO-/GSH), based on sulfhydryl coupling/cleaving reaction. We develop a facile strategy to prepare such reversible MRI nanoprobe via one-step surface modification. Owing to the significant change in size during the reversible response, the imaging sensitivity of RRMNs is greatly improved, which enables RRMNs to monitor the tiny change of oxidative stress in liver injury. Notably, such reversible MRI nanoprobe can non-invasively visualize the deep-seated liver tissue slice by slice in living mice. Moreover, this MRI nanoprobe can not only report molecular information about the degree of liver injury but also provide anatomical information about where the pathology occurred. The reversible MRI probe is promising for accurately and facilely monitoring I/R process, accessing injury degree and developing powerful strategy for precise treatment.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Nan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huiyi Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lingling Lei
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Renye Yue
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guoqiang Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Min He
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310000, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Tang X, Li A, Zuo C, Liu X, Luo X, Chen L, Li L, Lin H, Gao J. Water-Soluble Chemically Precise Fluorinated Molecular Clusters for Interference-Free Multiplex 19F MRI in Living Mice. ACS NANO 2023; 17:5014-5024. [PMID: 36862135 DOI: 10.1021/acsnano.2c12793] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) is gaining widespread interest from the fields of biomolecule detection, cell tracking, and diagnosis, benefiting from its negligible background, deep tissue penetration, and multispectral capacity. However, a wide range of 19F MRI probes are in great demand for the development of multispectral 19F MRI due to the limited number of high-performance 19F MRI probes. Herein, we report a type of water-soluble molecular 19F MRI nanoprobe by conjugating fluorine-containing moieties with a polyhedral oligomeric silsesquioxane (POSS) cluster for multispectral color-coded 19F MRI. These chemically precise fluorinated molecular clusters are of excellent aqueous solubility with relatively high 19F contents and of single 19F resonance frequency with suitable longitudinal and transverse relaxation times for high-performance 19F MRI. We construct three POSS-based molecular nanoprobes with distinct 19F chemical shifts at -71.91, -123.23, and -60.18 ppm and achieve interference-free multispectral color-coded 19F MRI of labeled cells in vitro and in vivo. Moreover, in vivo 19F MRI reveals that these molecular nanoprobes could selectively accumulate in tumors and undergo rapid renal clearance afterward, illustrating their favorable in vivo behavior for biomedical applications. This study provides an efficient strategy to expand the 19F probe libraries for multispectral 19F MRI in biomedical research.
Collapse
Affiliation(s)
- Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Renji Medical Research Center, Chengdu Second People's Hospital, Chengdu 610011, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cuicui Zuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small Molecule Probes for 19F Magnetic Resonance Imaging. Anal Chem 2023; 95:70-82. [PMID: 36625117 DOI: 10.1021/acs.analchem.2c04539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| |
Collapse
|
14
|
Daksh S, Kaul A, Deep S, Datta A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J Inorg Biochem 2022; 237:112018. [PMID: 36244313 DOI: 10.1016/j.jinorgbio.2022.112018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Emerging non-invasive molecular imaging modalities can detect a pathophysiological state at the molecular level before any anatomic changes are observed. Magnetic resonance imaging (MRI) is preferred over other nuclear imaging techniques owing to its radiation-free approach. Conventionally, most MRI contrast agents employed predominantly involve lanthanide metal: Gadolinium (Gd) until the discovery of associated severe nephrogenic toxicity issues. This limitation led a way to the development of manganese-based contrast agents which offer similar positive contrast enhancement capability. A vast quantity of experimental data has been accumulated over the last decade to define the physicochemical characteristics of manganese chelates with various ligand scaffolds. One can now observe how the ligand configurations, rigidity, and donor-acceptor characteristics impact the stability of the complex. This review covers the current trends in the development of manganese-based MRI contrast agents, the mechanisms they are based on and design considerations for newer manganese-based contrast agents with higher diagnostic strength along with better safety profiles.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India
| | - Ankur Kaul
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
15
|
Zalewski M, Janasik D, Wierzbicka A, Krawczyk T. Design Principles of Responsive Relaxometric 19F Contrast Agents: Evaluation from the Point of View of Relaxation Theory and Experimental Data. Inorg Chem 2022; 61:19524-19542. [DOI: 10.1021/acs.inorgchem.2c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mariusz Zalewski
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Adrianna Wierzbicka
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| |
Collapse
|
16
|
Xue SS, Pan Y, Pan W, Liu S, Li N, Tang B. Bioimaging agents based on redox-active transition metal complexes. Chem Sci 2022; 13:9468-9484. [PMID: 36091899 PMCID: PMC9400682 DOI: 10.1039/d2sc02587f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Detecting the fluctuation and distribution of various bioactive species in biological systems is of great importance in determining diseases at their early stages. Metal complex-based probes have attracted considerable attention in bioimaging applications owing to their unique advantages, such as high luminescence, good photostability, large Stokes shifts, low toxicity, and good biocompatibility. In this review, we summarized the development of redox-active transition metal complex-based probes in recent five years with the metal ions of iron, manganese, and copper, which play essential roles in life and can avoid the introduction of exogenous metals into biological systems. The designing principles that afford these complexes with optical or magnetic resonance (MR) imaging properties are elucidated. The applications of the complexes for bioimaging applications of different bioactive species are demonstrated. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yingbo Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Shujie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
17
|
Klika KD, Alsalim R, Eftekhari M, Makarem A. Synthesis of a polyaminocarboxylate-based aluminum complex and its structural studies using 1H{ 13C}-HMBC NMR and a Karplus-type function. Dalton Trans 2022; 51:12436-12441. [PMID: 35943556 DOI: 10.1039/d2dt01702d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The HBED chelator is used to stabilize small and hard metal ions such as Fe3+, Ti4+, Ga3+ and Al3+ in both medicine and industry. While the coordination of hexadentate HBED4- is known in the case of Fe3+, Ti4+ and Ga3+, it is unknown in the case of the small Al3+ ion since its corresponding complex has never been fully characterized. Thus, in this work the coordination pattern in a newly synthesized aluminum HBED-based complex ([Al-HBED-NN]-Na+) was determined using 2D NMR in conjunction with DFT calculations.
Collapse
Affiliation(s)
- Karel D Klika
- German Cancer Research Center (DKFZ), Molecular Structure Analysis, INF 280, 69120 Heidelberg, Germany
| | - Rana Alsalim
- University of Hamburg, Institute of Pharmacy, Bundesstraße 45, 20146 Hamburg, Germany.
| | | | - Ata Makarem
- University of Hamburg, Institute of Pharmacy, Bundesstraße 45, 20146 Hamburg, Germany.
| |
Collapse
|
18
|
Karbalaei S, Goldsmith CR. Recent advances in the preclinical development of responsive MRI contrast agents capable of detecting hydrogen peroxide. J Inorg Biochem 2022; 230:111763. [DOI: 10.1016/j.jinorgbio.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
|
19
|
Li A, Luo X, Li L, Chen D, Liu X, Yang Z, Yang L, Gao J, Lin H. Activatable Multiplexed 19F Magnetic Resonance Imaging Visualizes Reactive Oxygen and Nitrogen Species in Drug-Induced Acute Kidney Injury. Anal Chem 2021; 93:16552-16561. [PMID: 34859996 DOI: 10.1021/acs.analchem.1c03744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vivo levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical to many physiological and pathological processes. Because of the distinct differences in their biological generation and effects, simultaneously visualizing both of them could help deepen our insights into the mechanistic details of these processes. However, real-time and deep-tissue imaging and differentiation of ROS- and RNS-related molecular events in living subjects still remain a challenge. Here, we report the development of two activatable 19F magnetic resonance imaging (MRI) molecular probes with different 19F chemical shifts and specific responsive behaviors for simultaneous in vivo detection and deep-tissue imaging of O2•- and ONOO-. These probes are capable of real-time visualization and differentiation of O2•- and ONOO- in living mice with drug-induced acute kidney injury by interference-free multiplexed hot-spot 19F MRI, illustrating the potential of this technique for background-free real-time imaging of diverse biological processes, accurate diagnosis of various diseases in deep tissues, and rapid toxicity evaluation of assorted drugs.
Collapse
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhaoxuan Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lijiao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Lin H, Tang X, Li A, Gao J. Activatable 19 F MRI Nanoprobes for Visualization of Biological Targets in Living Subjects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005657. [PMID: 33834558 DOI: 10.1002/adma.202005657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Visualization of biological targets such as crucial cells and biomolecules in living subjects is critical for the studies of important biological processes. Though 1 H magnetic resonance imaging (MRI) has demonstrated its power in offering detailed anatomical and pathological information, its capacity for in vivo tracking of biological targets is limited by the high biological background of 1 H. 19 F distinguishes itself from its competitors as an exceptional complement to 1 H in MRI through its high sensitivity, low biological background, and broad chemical shift range. The specificity and sensitivity of 19 F MRI can be further boosted with activatable nanoprobes. The advantages of 19 F MRI with activatable nanoprobes enable in vivo detection and imaging at the cellular or even molecular level in deep tissues, rendering this technique appealing as a potential solution for visualization of biological targets in living subjects. Here, recent progress over the past decades on activatable 19 F MRI nanoprobes made from three major 19 F-containing compounds, as well as present challenges and potential opportunities, are summarized to provide a panoramic prospective for the people who are interested in this emerging and exciting field.
Collapse
Affiliation(s)
- Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
21
|
Abstract
Magnetic resonance imaging (MRI) is one of the most powerful imaging tools today, capable of displaying superior soft-tissue contrast. This review discusses developments in the field of 19 F MRI multimodal probes in combination with optical fluorescence imaging (OFI), 1 H MRI, chemical exchange saturation transfer (CEST) MRI, ultrasonography (USG), X-ray computed tomography (CT), single photon emission tomography (SPECT), positron emission tomography (PET), and photoacoustic imaging (PAI). In each case, multimodal 19 F MRI probes compensate for the deficiency of individual techniques and offer improved sensitivity or accuracy of detection over unimodal counterparts. Strategies for designing 19 F MRI multimodal probes are described with respect to their structure, physicochemical properties, biocompatibility, and the quality of images.
Collapse
Affiliation(s)
- Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego, 4, 44-100, Gliwice, Poland
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego, 4, 44-100, Gliwice, Poland
| |
Collapse
|
22
|
Guo C, Nie Q, Xu S, Wang L. 19F-Grafted Fluorescent Carbonized Polymer Dots for Dual-Mode Imaging. Anal Chem 2021; 93:13880-13885. [PMID: 34628854 DOI: 10.1021/acs.analchem.1c02661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dual-modal imaging systems could provide complementary information by taking advantage of each imaging modality. Herein, a fluorescence and 19F magnetic resonance imaging nanoprobe was developed through preparation of 19F-grafted fluorescent carbonized polymer dots (FCPDs). Both fluorescence and 19F nuclear magnetic resonance intensities of these FCPDs can be modulated by controlling the carbonization processes. The strong yellow fluorescence renders these FCPDs capable of cell fluorescence imaging. The in vitro and in vivo assessments demonstrated that the as-prepared FCPDs were suitable for 19F magnetic resonance imaging (19F MRI), which would provide great potential for biological imaging and early diagnosis applications. Moreover, this fabrication strategy offers a new protocol for 19F MRI nanoprobe design.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiangqiang Nie
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Li A, Li L, Liu X, Chen D, Fan Y, Lin H, Gao J. Deep-tissue real-time imaging of drug-induced liver injury with peroxynitrite-responsive 19F MRI nanoprobes. Chem Commun (Camb) 2021; 57:9622-9625. [PMID: 34546273 DOI: 10.1039/d1cc03913j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peroxynitrite is an important biomarker for assessing drug-induced liver injury (DILI), which is critical for the development and use of drugs. Herein, we report the development of peroxynitrite-responsive self-assembled 19F MRI nanoprobes, which enable the sensitive imaging of peroxynitrite in L02 cells subjected to oxidative stress and living mice with DILI.
Collapse
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yifan Fan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
24
|
Karbalaei S, Knecht E, Franke A, Zahl A, Saunders AC, Pokkuluri PR, Beyers RJ, Ivanović-Burmazović I, Goldsmith CR. A Macrocyclic Ligand Framework That Improves Both the Stability and T1-Weighted MRI Response of Quinol-Containing H 2O 2 Sensors. Inorg Chem 2021; 60:8368-8379. [PMID: 34042423 DOI: 10.1021/acs.inorgchem.1c00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previously prepared Mn(II)- and quinol-containing magnetic resonance imaging (MRI) contrast agent sensors for H2O2 relied on linear polydentate ligands to keep the redox-activatable quinols in close proximity to the manganese. Although these provide positive T1-weighted relaxivity responses to H2O2 that result from oxidation of the quinol groups to p-quinones, these reactions weaken the binding affinity of the ligands, promoting dissociation of Mn(II) from the contrast agent in aqueous solution. Here, we report a new ligand, 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane, that consists of two quinols covalently tethered to a cyclam macrocycle. The macrocycle provides stronger thermodynamic and kinetic barriers for metal-ion dissociation in both the reduced and oxidized forms of the ligand. The Mn(II) complex reacts with H2O2 to produce a more highly aquated Mn(II) species that exhibits a 130% greater r1, quadrupling the percentile response of our next best sensor. With a large excess of H2O2, there is a noticeable induction period before quinol oxidation and r1 enhancement occurs. Further investigation reveals that, under such conditions, catalase activity initially outcompetes ligand oxidation, with the latter occurring only after most of the H2O2 has been depleted.
Collapse
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Erik Knecht
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians-Universität München. Butenandtstrasse 5-13, Haus D 81377 München, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - P Raj Pokkuluri
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J Beyers
- Magnetic Resonance Imaging Research Center, Auburn University, Auburn, Alabama 36849, United States
| | - Ivana Ivanović-Burmazović
- Department of Chemistry, Ludwig-Maximilians-Universität München. Butenandtstrasse 5-13, Haus D 81377 München, Germany
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
25
|
Wu Y, Huang Y, Tu C, Wu F, Tong G, Su Y, Xu L, Zhang X, Xiong S, Zhu X. A mesoporous polydopamine nanoparticle enables highly efficient manganese encapsulation for enhanced MRI-guided photothermal therapy. NANOSCALE 2021; 13:6439-6446. [PMID: 33885524 DOI: 10.1039/d1nr00957e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Theranostic agents based on magnetic resonance imaging (MRI) and photothermal therapy (PTT) play an important role in tumor therapy. However, the available theranostic agents are facing great challenges such as biocompatibility, MRI contrast effect and photothermal conversion efficiency (η). In this work, mesoporous polydopamine nanoparticles (MPDAPs/Mn) were prepared on MRI and PTT combined theranostic nanoplatforms, of which the high loading manganese ions and specific surface areas enable good MRI contrast and excellent photothermal conversion efficiency, respectively. The MPDAPs/Mn have uniform morphology, good stability and biocompatibility. Meanwhile, in vitro and in vivo studies have confirmed their superior T1-weighted MRI effect and photothermal conversion efficiency. Furthermore, MPDAPs/Mn have excellent antitumor efficacy in HeLa tumor-bearing mice. Therefore, this developed MPDAPs/Mn theranostic nanoplatform could be a promising candidate for MRI-guided photothermal cancer therapy.
Collapse
Affiliation(s)
- Yan Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang R, An L, He J, Li M, Jiao J, Yang S. A class of water-soluble Fe(III) coordination complexes as T1-weighted MRI contrast agents. J Mater Chem B 2021; 9:1787-1791. [PMID: 33595044 DOI: 10.1039/d0tb02716b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Iron-based coordination complexes are showing increasing potential to be alternatives for T1-weighted magnetic resonance imaging (MRI) and contribute to the safety of gadolinium-based compounds. In this work, three water-soluble iron-based complexes constructed using catechol ligands exhibiting T1-weighted MRI contrast behavior are described. The longitudinal relaxivity (r1) increase from 0.88 to 1.43 mM-1 s-1 mainly depends on the sizes and the number of water molecules in the second and outer spheres around the discrete complexes.
Collapse
Affiliation(s)
- Run Wang
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Jing He
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Mengmeng Li
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Jingjing Jiao
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Shiping Yang
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China. and The Key Laboratory of Resource Chemistry of the Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai 200234, P. R. China
| |
Collapse
|
27
|
Kadakia RT, Xie D, Guo H, Bouley B, Yu M, Que EL. Responsive fluorinated nanoemulsions for 19F magnetic resonance detection of cellular hypoxia. Dalton Trans 2020; 49:16419-16424. [PMID: 32692342 PMCID: PMC7688550 DOI: 10.1039/d0dt01182g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report two highly fluorinated Cu-based imaging agents, CuL1 and CuL2, for detecting cellular hypoxia as nanoemulsion formulations. Both complexes retained their initial quenched 19F MR signals due to paramagnetic Cu2+; however, both complexes displayed a large signal increase when the complex was reduced. DLS studies showed that the CuL1 nanoemulsion (NECuL1) had a hydrodiameter of approximately 100 nm and that it was stable for four weeks post-preparation. Hypoxic cells incubated with NECuL1 showed that 40% of the Cu2+ taken up was reduced in low oxygen environments.
Collapse
Affiliation(s)
- Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Xie D, Yu M, Xie Z, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination‐Induced Spin‐State Switches for
19
F Magnetic Resonance‐Based Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Da Xie
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Meng Yu
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Zhu‐Lin Xie
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Rahul T. Kadakia
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Chris Chung
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Lauren E. Ohman
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Emily L. Que
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| |
Collapse
|
29
|
Xie D, Yu M, Xie ZL, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination-Induced Spin-State Switches for 19 F Magnetic Resonance-Based Detection. Angew Chem Int Ed Engl 2020; 59:22523-22530. [PMID: 32790890 DOI: 10.1002/anie.202010587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 12/15/2022]
Abstract
19 F magnetic resonance (MR) based detection coupled with well-designed inorganic systems shows promise in biological investigations. Two proof-of-concept inorganic probes that exploit a novel mechanism for 19 F MR sensing based on converting from low-spin (S=0) to high-spin (S=1) Ni2+ are reported. Activation of diamagnetic NiL1 and NiL2 by light or β-galactosidase, respectively, converts them into paramagnetic NiL0 , which displays a single 19 F NMR peak shifted by >35 ppm with accelerated relaxation rates. This spin-state switch is effective for sensing light or enzyme expression in live cells using 19 F MR spectroscopy and imaging that differentiate signals based on chemical shift and relaxation times. This general inorganic scaffold has potential for developing agents that can sense analytes ranging from ions to enzymes, opening up diverse possibilities for 19 F MR based biosensing.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Meng Yu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Zhu-Lin Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Chris Chung
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Lauren E Ohman
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| |
Collapse
|
30
|
Kakiuchi R, Hirayama T, Yanagisawa D, Tooyama I, Nagasawa H. A 19F-MRI probe for the detection of Fe(ii) ions in an aqueous system. Org Biomol Chem 2020; 18:5843-5849. [DOI: 10.1039/d0ob00903b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An activity-based 19F-MRI probe that showed a chemical shift change in response to Fe(ii) was developed.
Collapse
Affiliation(s)
- Ryo Kakiuchi
- Laboratory of Pharmaceutical and Medicinal Chemistry
- Gifu Pharmaceutical University
- Gifu
- Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry
- Gifu Pharmaceutical University
- Gifu
- Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center
- Shiga University of Medical Science
- Shiga
- Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center
- Shiga University of Medical Science
- Shiga
- Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry
- Gifu Pharmaceutical University
- Gifu
- Japan
| |
Collapse
|