1
|
Zhang Y, Peng S, Liu D, Zhu F. Design and engineering of 3D plasmonic superstructure based on Pickering emulsion templates for surface-enhanced Raman spectroscopy applications in chemical and biomedical sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124921. [PMID: 39126866 DOI: 10.1016/j.saa.2024.124921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The integration of Pickering emulsion as a versatile template facilitates the assembly of nanoscale and microscale NPs, leading to the formation of intricate 3D superstructures. These superstructures exhibit collective properties, including optical, electric, and catalytic functionalities, surpassing individual building block. This review comprehensively explores the design and engineering principles behind the creation of these multifaceted superstructures. The exploration begins with the fundamental aspects of surface chemistry governing nanoparticles, a crucial factor in directing their assembly behavior at the curved liquid-liquid emulsion interface. Emphasis is placed on understanding emulsion stability, a pivotal element guiding the formation of stable 3D architectures. The discussion extends to unraveling the underlying mechanisms promoting the formation of these 3D superstructures. The focus lies in elucidating the optical functionalities of these superstructures, particularly in the context of surface-enhanced Raman spectroscopy application. The surveyed literature showcases diverse Pickering emulsion-based strategies employed in the assembly of plasmonic nanoparticles into intricate superstructures, offering controlled architectures and unlocking unique potentials for chemical and biochemical sensing.
Collapse
Affiliation(s)
- Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Sasa Peng
- College of Food Science and Technology, Northwest University, 229 Taibei North Road, Xi'an, Shanxi 710069, China
| | - Dongli Liu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK; College of Food Science and Technology, Northwest University, 229 Taibei North Road, Xi'an, Shanxi 710069, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China.
| |
Collapse
|
2
|
Zhang Y, Ye Z, Li C, Chen Q, Aljuhani W, Huang Y, Xu X, Wu C, Bell SEJ, Xu Y. General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis. Nat Commun 2023; 14:1392. [PMID: 36914627 PMCID: PMC10011407 DOI: 10.1038/s41467-023-37001-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Pickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle constituents. This approach is inconvenient and potentially a dead-end for many applications since the adsorbed modifiers prevent interactions between the functional nanosurface and its surroundings. Here, we demonstrate a general modifier-free approach to construct Pickering emulsions by using a combination of stabilizer particles, which stabilize the emulsion droplet, and a second population of unmodified functional particles that sit alongside the stabilizers at the interface. Freeing Pickering emulsions from chemical modifiers unlocks their potential across a range of applications including plasmonic sensing and interfacial catalysis that have previously been challenging to achieve. More broadly, this strategy provides an approach to the development of surface-accessible nanomaterials with enhanced and/or additional properties from a wide range of nano-building blocks including organic nanocrystals, carbonaceous materials, metals and oxides.
Collapse
Affiliation(s)
- Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Qinglu Chen
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Wafaa Aljuhani
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Yiming Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK.
| |
Collapse
|
3
|
Gazil O, Virgilio N, Gauffre F. Synthesis of ultrasmall metal nanoparticles and continuous shells at the liquid/liquid interface in Ouzo emulsions. NANOSCALE 2022; 14:13514-13519. [PMID: 36106947 DOI: 10.1039/d2nr04019k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we report a novel method to synthesize metal nanoparticle-shells (NP-shells) and continuous shells at the liquid/liquid interface, via an interfacial reaction in an Ouzo emulsion. Ouzo emulsions spontaneously form submicronic droplets with a narrow size distribution, without any energy-intensive process. The Ouzo system in this work comprises water, tetrahydrofuran (THF) and butylated hydroxytoluene (BHT), and forms BHT-rich droplets (∼100 nm). The addition of a reducing agent (NaBH4) in the aqueous phase, and of a metal precursor (AuPPh3Cl and/or Pd(PPh3)2Cl2) in the BHT-rich droplets, results in the formation of Au nanoparticles (AuNPs), continuous Pd shells, or bimetallic shells, at the interface of the droplets. Control over the NP-shell size was achieved by the addition of a water-soluble polymer during the synthesis, which in turn leads to smaller NP-shells.
Collapse
Affiliation(s)
- Olivier Gazil
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Nick Virgilio
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | | |
Collapse
|
4
|
Glotov A, Vutolkina A, Pimerzin A, Vinokurov V, Lvov Y. Clay nanotube-metal core/shell catalysts for hydroprocesses. Chem Soc Rev 2021; 50:9240-9277. [PMID: 34241609 DOI: 10.1039/d1cs00502b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catalytic hydroprocesses play a significant role in oil refining and petrochemistry. The tailored design of new metal nanosystems and optimization of their support, composition, and structure is a prospective strategy for enhancing the efficiency of catalysts. Mesoporous support impacts the active component by binding it to the surface, which leads to the formation of tiny highly dispersed catalytic particles stabilized from aggregation and with minimized leaching. The structural and acidic properties of the support are crucial and determine the size and dispersion of the active metal phase. Currently, research efforts are shifted toward the design of nanoscale porous materials, where homogeneous catalysts are displaced by heterogeneous. Ceramic materials, such as 50 nm diameter natural halloysite nanotubes, are of special interest for this. Much attention to halloysite clay is due to its tubular structure with a hollow 10-15 nm diameter internal cavity, textural characteristics, and different chemical compositions of the outer/inner surfaces, allowing selective nanotube modification. Loading halloysite with metal particles or placing them outside the tubes provides stable and efficient mesocatalysts. The low cost of this abundant nanoclay makes it a good choice for the scaled-up architectural design of core-shell catalysts, containing active metal sites (Au, Ag, Pt, Ru, Co, Mo, Fe2O3, CdS, CdZnS, Cu-Ni) located inside or outside the tubular template. These alumosilicate nanotubes are environment-friendly and are available in thousands of tons. Herein, we summarized the advances of halloysite-based composite materials for hydroprocesses, focusing on the selective binding of metal particles. We analyze the tubes' morphology adjustments and size selection, the physicochemical properties of pristine and modified halloysite (e.g., acid-etched or silanized), the methods of metal clusters formation, and their localization. We indicate prospective routes for the architectural design of stable and efficient nanocatalysts based on this safe and natural clay material.
Collapse
Affiliation(s)
- Aleksandr Glotov
- Gubkin Russian State University of Oil and Gas (NRU), 65 Leninsky Prospekt, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|