1
|
Li X, Zhao X, Wang X, Xiong A, Wang Z, Shi Z, Zhang J, Wang H, Wei W, He C, Ma J, Guo Z, Duan C, Zhao J, Wang X. Programmable Modular Assembly of Homochiral Ir(III)-Metallohelices to Reverse Metallodrug Resistance by Inhibiting CDK1. Angew Chem Int Ed Engl 2025; 64:e202419292. [PMID: 39673540 DOI: 10.1002/anie.202419292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Drug resistance is a major cause of cancer recurrence and poor prognosis. The innovative design and synthesis of inhibitors to target drug-resistance-specific proteins is highly desirable. However, challenges remain in precisely adjusting their conformation and stereochemistry to adapt the chiral regions of target proteins. Herein, using a stepwise programmable modular assembly approach, we precisely engineered two pairs of homochiral dinuclear Ir(III) metallohelices (Λ2S4-Hbpy and Δ2R4-Hbpy, Δ2S4-Hbpy and Λ2R4-Hbpy) functionalized with flexible dithiourea linkages. The resulting homochiral metallohelices exhibited significant chirality-dependent photocytotoxicities, and the enhanced structural compatibility of Δ2S4-Hbpy with the target cyclin-dependent kinase 1 (CDK1) contributed to its superior photodynamic therapy efficacy, achieving an outstanding photocytotoxicity index (PI) value of 2.3×104. Interestingly, emerging as a critical mediator in the development of oxaliplatin resistance, CDK1 targeting by Δ2S4-Hbpy achieved enhanced cellular uptake, anticancer activity, and oncosis-mediated cell death in oxaliplatin-resistant HCT-8/L cells. Mechanistic investigations, including proteomic profiling and CDK1 gene silencing, confirmed the pivotal role of chirality-selective CDK1 targeting in reversing metallodrug resistance. This study introduces a promising platform for constructing and customizing flexible metallohelices with precise conformation and stereochemistry to target drug-resistance-specific proteins, offering innovative insights into the designability of metallodrugs to overcome drug resistance.
Collapse
Affiliation(s)
- Xuezhao Li
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Xing Zhao
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Xingyun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Anxian Xiong
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Zhicheng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Zhuolin Shi
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Jingyi Zhang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China Institution
| | - Hanlin Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Wei Wei
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Cheng He
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zijian Guo
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China Institution
| | - Chunying Duan
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China Institution
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China Institution
| |
Collapse
|
2
|
Kedia M, Khatun S, Phukon U, Shankar B, Rengan AK, Sathiyendiran M. Trinuclear rhenium(I)-based metallocages as anticancer agents towards human cervical cancer cells. Dalton Trans 2023; 52:14314-14318. [PMID: 37789813 DOI: 10.1039/d3dt02535g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The first examples of spherical-shaped trinuclear rhenium(I) organometallic cages displaying cytotoxic, antimetastatic, antiproliferative and DNA-damaging behavior towards a human cervical (HeLa) cancer cell line are reported. The compact design of the metallocages facilitates their interactions with biosystems leading to comparable efficiency to that of the commonly used anticancer drug cisplatin.
Collapse
Affiliation(s)
- Moon Kedia
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology, Kandi, Hyderabad-502 284, India.
| | - Upasana Phukon
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai-625 015, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Kandi, Hyderabad-502 284, India.
| | | |
Collapse
|
3
|
Bhol M, Borkar RL, Shankar B, Panda SK, Wolff M, Sathiyendiran M. Self-Assembly of Rhenium(I) Double-Stranded Helicate and Mesocate from Flexible Ditopic Benzimidazolyl/Naphthanoimidazolyl N-Donor and Rigid Bis-Chelating Hydroxyphenylbenzimidazolyl N∩OH-Donor Ligands: Synthesis, Characterization, and Photophysical and B-DNA Docking Studies. Inorg Chem 2023; 62:11554-11569. [PMID: 37436081 DOI: 10.1021/acs.inorgchem.3c01213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The self-assembly of three rheniumtricarbonyl core-based supramolecular coordination complexes (SCCs), fac-[Re(CO)3(μ-L)(μ-L')Re(CO)3] (1-3) was carried out using Re2(CO)10, rigid bis-chelating ligand (HO∩N-Ph-N∩OH (L1) (where HO∩N = 2-hydroxyphenylbenzimidazolyl), and flexible ditopic N-donor ligands (L2 = bis(3-((1H-benzoimidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L3 = bis(3-((1H-naphtho[2,3-d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L4 = bis(4-(naphtho[2,3-d]imidazol-1-yl-methyl)phenyl)methane) via a one-pot solvothermal approach. In the solid state, the dinuclear SCCs adopt heteroleptic double-stranded helicate and meso-helicate architectures. The supramolecular structures of the complexes are retained in the solution based on the 1H NMR and electrospray ionization (ESI)-mass analysis. The spectral and photophysical properties of the complexes were studied both experimentally and using time-dependent density functional theory (TDDFT) calculations. All of the supramolecules exhibited emission in both solution and solid states. Theoretical studies were conducted to determine the chemical reactivity parameters, molecular electrostatic potential surface plots, natural population, and Hirshfeld analysis for complexes 1-3. Additionally, molecular docking studies were carried out for complexes 1-3 with B-DNA.
Collapse
Affiliation(s)
- Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Reema L Borkar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625015, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur 760010, India
| | - Mariusz Wolff
- Institut für Chemische Katalyse, Universität Wien, Währinger Straße 38-42, Wien 1090, Österreich
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9th Street, Katowice 40-006, Poland
| | | |
Collapse
|
4
|
Pedro Silva J, González-Berdullas P, Pereira M, Duarte D, Rodríguez-Borges JE, Vale N, Esteves da Silva JC, Pinto da Silva L. Evaluation of the anticancer activity and chemiluminescence of a halogenated coelenterazine analog. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Moreno-Alcántar G, Casini A. Bioinorganic supramolecular coordination complexes and their biomedical applications. FEBS Lett 2023; 597:191-202. [PMID: 36345593 DOI: 10.1002/1873-3468.14535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
The field of Bioinorganic Supramolecular Chemistry is an emerging research area including metal-based supramolecules resulting from coordination-driven self-assembly (CDSA), whereby metal ions and organic ligands can be easily linked by metal-ligand bonds via Lewis' acid/base interactions. The focus of this 'In a Nutshell' review will be on the family of supramolecular coordination complexes, discrete entities formed by CDSA, which have recently captured widespread attention as a new class of versatile multifunctional materials with broad biological applications including molecular recognition, biosensing, therapy, imaging and drug delivery. Herein, we provide a summary of the state-of-the-art use of these systems in biomedicine, with some selected representative examples, as well as our visions of the challenges and possible directions in the field.
Collapse
Affiliation(s)
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Garching bei München, Germany
| |
Collapse
|
6
|
Lisboa LS, Riisom M, Dunne HJ, Preston D, Jamieson SMF, Wright LJ, Hartinger CG, Crowley JD. Hydrazone- and imine-containing [PdPtL 4] 4+ cages: a comparative study of the stability and host-guest chemistry. Dalton Trans 2022; 51:18438-18445. [PMID: 36416449 DOI: 10.1039/d2dt02720h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new [PdPtL4]4+ heterobimetallic cage containing hydrazone linkages has been synthesised using the sub-component self-assembly approach. 1H and DOSY nuclear magnetic resonance (NMR) spectroscopy and electrospray ionisation mass spectrometry (ESIMS) data were consistent with the formation of the [PdPtL4]4+ architecture. The cage was stimulus-responsive and could be partially disassembled and reassembled by the addition of dimethylaminopyridine (DMAP) and p-tolenesulfonic acid (TsOH), respectively. Additionally, the stability of the hydrazone cage against hydrolysis in the presence of water and nucleophilic decomposition in the presence of guest molecules was compared to a previously synthesised imine-containing [PdPtL4]4+ cage. It was established that the hydrazone linkage was more resistant to hydrolysis. Furthermore, the host-guest (HG) chemistry with a series of drug and drug-like molecules was examined. The hydrazone cage was shown to interact with cisplatin while the smaller imine cage was shown to interact with 5-fluorouracil and oxaliplatin in CD3CN. No HG interactions were observed in the more polar d6-DMSO. In vitro antiproliferative activity studies demonstrated both cages were active against the cancer cell lines tested and displayed half-maximal inhibitory (IC50) values in the range of 25-35 μM. Most [PdPtL4]4+-drug mixtures tested had higher IC50 values than the hosts. However, the [PdPtL4]4+ cages, and [PdPtL4]4+:drug mixtures were less cytotoxic than the well established anticancer drugs cisplatin, oxaliplatin and 5-fluorouracil.
Collapse
Affiliation(s)
- Lynn S Lisboa
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Mie Riisom
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Henry J Dunne
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
7
|
Discovery of the Anticancer Activity for Lung and Gastric Cancer of a Brominated Coelenteramine Analog. Int J Mol Sci 2022; 23:ijms23158271. [PMID: 35955406 PMCID: PMC9368541 DOI: 10.3390/ijms23158271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is still a challenging disease to treat, both in terms of harmful side effects and therapeutic efficiency of the available treatments. Herein, to develop new therapeutic molecules, we have investigated the anticancer activity of halogenated derivatives of different components of the bioluminescent system of marine Coelenterazine: Coelenterazine (Clz) itself, Coelenteramide (Clmd), and Coelenteramine (Clm). We have found that Clz derivatives possess variable anticancer activity toward gastric and lung cancer. Interestingly, we also found that both brominated Clmd (Br-Clmd) and Clm (Br-Clm) were the most potent anticancer compounds toward these cell lines, with this being the first report of the anticancer potential of these types of molecules. Interestingly, Br-Clm possessed some safety profile towards noncancer cells. Further evaluation revealed that the latter compound induced cell death via apoptosis, with evidence for crosstalk between intrinsic and extrinsic pathways. Finally, a thorough exploration of the chemical space of the studied Br-Clm helped identify the structural features responsible for its observed anticancer activity. In conclusion, a new type of compounds with anticancer activity toward gastric and lung cancer was reported and characterized, which showed interesting properties to be considered as a starting point for future optimizations towards obtaining suitable chemotherapeutic agents.
Collapse
|
8
|
Hu X, Luo Q, Qin Y, Wu Y, Liu XW. DNA Interaction, DNA Photocleavage, Photocytotoxicity In Vitro, and Molecular Docking of Naphthyl-Appended Ruthenium Complexes. Molecules 2022; 27:3676. [PMID: 35744808 PMCID: PMC9227816 DOI: 10.3390/molecules27123676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
With the development of metal-based drugs, Ru(II) compounds present potential applications of PDT (photodynamic therapy) and anticancer reagents. We herein synthesized two naphthyl-appended ruthenium complexes by the combination of the ligand with naphthyl and bipyridyl. The DNA affinities, photocleavage abilities, and photocytotoxicity were studied by various spectral methods, viscosity measurement, theoretical computation method, gel electrophoresis, and MTT method. Two complexes exhibited strong interaction with calf thymus DNA by intercalation. Production of singlet oxygen (1O2) led to obvious DNA photocleavage activities of two complexes under 365 nm light. Furthermore, two complexes displayed obvious photocytotoxicity and low dark cytotoxicity towards Hela, A549, and A375 cells.
Collapse
Affiliation(s)
| | | | | | | | - Xue-Wen Liu
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China; (X.H.); (Q.L.); (Y.Q.); (Y.W.)
| |
Collapse
|
9
|
Martins FM, Siqueira JD, Iglesias BA, Chaves OA, Back DF. Pyridoxal water-soluble cobalt(II) helicates: Synthesis, structural analysis, and interactions with biomacromolecules. J Inorg Biochem 2022; 233:111854. [DOI: 10.1016/j.jinorgbio.2022.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
10
|
Levín P, Balsa LM, Silva CP, Herzog AE, Vega A, Pavez J, León IE, Lemus L. Artificial Chemical Nuclease and Cytotoxic Activity of a Mononuclear Copper(I) Complex and a Related Binuclear Double‐Stranded Helicate. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pedro Levín
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
| | - Lucía M. Balsa
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP) Facultad de Ciencias Exactas Universidad Nacional de La Plata Bv 120 1465 La Plata Argentina
| | - Carlos P. Silva
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
- Soft Matter Research and Technology Center, SMAT-C Santiago Chile
| | - Austin E. Herzog
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Andrés Vega
- Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andrés Bello Viña del Mar Chile
- Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA Santiago Chile
| | - Jorge Pavez
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
- Soft Matter Research and Technology Center, SMAT-C Santiago Chile
| | - Ignacio E. León
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP) Facultad de Ciencias Exactas Universidad Nacional de La Plata Bv 120 1465 La Plata Argentina
| | - Luis Lemus
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
| |
Collapse
|
11
|
Magalhães CM, González-Berdullas P, Duarte D, Correia AS, Rodríguez-Borges JE, Vale N, Esteves da Silva JCG, Pinto da Silva L. Target-Oriented Synthesis of Marine Coelenterazine Derivatives with Anticancer Activity by Applying the Heavy-Atom Effect. Biomedicines 2021; 9:biomedicines9091199. [PMID: 34572385 PMCID: PMC8467094 DOI: 10.3390/biomedicines9091199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer therapeutic modality with remarkable advantages over more conventional approaches. However, PDT is greatly limited by its dependence on external light sources. Given this, PDT would benefit from new systems capable of a light-free and intracellular photodynamic effect. Herein, we evaluated the heavy-atom effect as a strategy to provide anticancer activity to derivatives of coelenterazine, a chemiluminescent single-molecule widespread in marine organisms. Our results indicate that the use of the heavy-atom effect allows these molecules to generate readily available triplet states in a chemiluminescent reaction triggered by a cancer marker. Cytotoxicity assays in different cancer cell lines showed a heavy-atom-dependent anticancer activity, which increased in the substituent order of hydroxyl < chlorine < bromine. Furthermore, it was found that the magnitude of this anticancer activity is also dependent on the tumor type, being more relevant toward breast and prostate cancer. The compounds also showed moderate activity toward neuroblastoma, while showing limited activity toward colon cancer. In conclusion, the present results indicate that the application of the heavy-atom effect to marine coelenterazine could be a promising approach for the future development of new and optimized self-activating and tumor-selective sensitizers for light-free PDT.
Collapse
Affiliation(s)
- Carla M. Magalhães
- Chemistry Research Unit (CIQUP), Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (C.M.M.); (P.G.-B.); (J.C.G.E.d.S.)
| | - Patricia González-Berdullas
- Chemistry Research Unit (CIQUP), Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (C.M.M.); (P.G.-B.); (J.C.G.E.d.S.)
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (D.D.); (A.S.C.); (N.V.)
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (D.D.); (A.S.C.); (N.V.)
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 697, 4169-007 Porto, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (D.D.); (A.S.C.); (N.V.)
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Joaquim C. G. Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (C.M.M.); (P.G.-B.); (J.C.G.E.d.S.)
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (D.D.); (A.S.C.); (N.V.)
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (C.M.M.); (P.G.-B.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, Rua do Campo Alegre 697, 4169-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
12
|
Do JL, Titi HM, Cuccia LA, Friščić T. A new class of anionic metallohelicates based on salicylic and terephthalic acid units, accessible in solution and by mechanochemistry. Chem Commun (Camb) 2021; 57:5143-5146. [PMID: 33899844 DOI: 10.1039/d0cc08180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a new class of anionic metallohelicates based on an abundant, industrially relevant salicylic acid derivative, leading to discrete double and triple-stranded architectures based on divalent and trivalent metals (Cu2+, Fe3+, respectively). The ability to assemble the metallohelicates in a solvent-free environment presents the opportunity to develop an inexpensive and environmentally-friendly design of helicate materials.
Collapse
Affiliation(s)
- Jean-Louis Do
- Department of Chemistry and Biochemistry, FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada. and Department of Chemistry and FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke St. West, Montreal H3A 0B8, Quebec, Canada.
| | - Hatem M Titi
- Department of Chemistry and FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke St. West, Montreal H3A 0B8, Quebec, Canada.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada.
| | - Tomislav Friščić
- Department of Chemistry and FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke St. West, Montreal H3A 0B8, Quebec, Canada.
| |
Collapse
|
13
|
Gómez-González J, Pérez Y, Sciortino G, Roldan-Martín L, Martínez-Costas J, Maréchal JD, Alfonso I, Vázquez López M, Vázquez ME. Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells*. Angew Chem Int Ed Engl 2021; 60:8859-8866. [PMID: 33290612 DOI: 10.1002/anie.202013039] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Indexed: 01/03/2023]
Abstract
Although largely overlooked in peptide engineering, coordination chemistry offers a new set of interactions that opens unexplored design opportunities for developing complex molecular structures. In this context, we report new artificial peptide ligands that fold into chiral helicates in the presence of labile metal ions such as FeII and CoII . Heterochiral β-turn-promoting sequences encode the stereoselective folding of the peptide ligands and define the physicochemical properties of their corresponding metal complexes. Circular dichroism and NMR spectroscopy in combination with computational methods allowed us to identify and determine the structure of two isochiral ΛΛ-helicates, folded as topological isomers. Finally, in addition to the in-vitro characterization of their selective binding to DNA three-way junctions, cell-microscopy experiments demonstrated that a rhodamine-labeled FeII helicate was internalized and selectively stains DNA replication factories in functional cells.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain
| | - Yolanda Pérez
- NMR Facility, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Lorena Roldan-Martín
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain
| |
Collapse
|
14
|
Gómez‐González J, Pérez Y, Sciortino G, Roldan‐Martín L, Martínez‐Costas J, Maréchal J, Alfonso I, Vázquez López M, Vázquez ME. Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jacobo Gómez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Spain
| | - Yolanda Pérez
- NMR Facility Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Giuseppe Sciortino
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola Spain
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans, 16 43007 Tarragona Spain
| | | | - José Martínez‐Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Bioquímica y Biología Molecular Universidade de Santiago de Compostela Spain
| | | | - Ignacio Alfonso
- Department of Biological Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Inorgánica Universidade de Santiago de Compostela Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Spain
| |
Collapse
|