1
|
Carré V, Godard P, Méreau R, Jacquot de Rouville HP, Jonusauskas G, McClenaghan N, Tassaing T, Vincent JM. Photogeneration of Chlorine Radical from a Self-Assembled Fluorous 4CzIPN•Chloride Complex: Application in C-H Bond Functionalization. Angew Chem Int Ed Engl 2024; 63:e202402964. [PMID: 38634355 DOI: 10.1002/anie.202402964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
The chlorine radical is a strong HAT (Hydrogen Atom Transfer) agent that is very useful for the functionalization of C(sp3)-H bonds. Albeit highly attractive, its generation from the poorly oxidizable chloride ion mediated by an excited photoredox catalyst is a difficult task. We now report that 8Rf8-4CzIPN, an electron-deficient fluorous derivative of the benchmark 4CzIPN photoredox catalyst belonging to the donor-acceptor carbazole-cyanoarene family, is not only a better photooxidant than 4CzIPN, but also becomes an excellent host for the chloride ion. Combining these two properties ultimately makes the self-assembled 8Rf8-4CzIPN•Cl- dual catalyst highly reactive in redox-neutral Giese-type C(sp3)-H bond alkylation reactions promoted by the chlorine radical. Additionally, because of its fluorous character, the efficient separation/recovery of 8Rf8-4CzIPN could be envisioned.
Collapse
Affiliation(s)
- Victor Carré
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Pascale Godard
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | | | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, CNRS UMR 5798, Univ. Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Nathan McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| |
Collapse
|
2
|
Fountain JN, Hawker MJ, Hartle L, Wu J, Montanari V, Sahoo JK, Davis LM, Kaplan DL, Kumar K. Towards Non-stick Silk: Tuning the Hydrophobicity of Silk Fibroin Protein. Chembiochem 2022; 23:e202200429. [PMID: 35998090 PMCID: PMC9830957 DOI: 10.1002/cbic.202200429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Indexed: 02/03/2023]
Abstract
Silk fibroin protein is a biomaterial with excellent biocompatibility and low immunogenicity. These properties have catapulted the material as a leader for extensive use in stents, catheters, and wound dressings. Modulation of hydrophobicity of silk fibroin protein to further expand the scope and utility however has been elusive. We report that installing perfluorocarbon chains on the surface of silk fibroin transforms this water-soluble protein into a remarkably hydrophobic polymer that can be solvent-cast. A clear relationship emerged between fluorine content of the modified silk and film hydrophobicity. Water contact angles of the most decorated silk fibroin protein exceeded that of Teflon®. We further show that water uptake in prefabricated silk bars is dramatically reduced, extending their lifetimes, and maintaining mechanical integrity. These results highlight the power of chemistry under moderate conditions to install unnatural groups onto the silk fibroin surface and will enable further exploration into applications of this versatile biomaterial.
Collapse
Affiliation(s)
| | - Morgan J. Hawker
- Department of Chemistry and Biochemistry, California State University, Fresno, Fresno, CA 93740
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Lauren Hartle
- Department of Chemistry, Tufts University, Medford, MA 02155
- Present address: Prime Impact Fund, Cambridge, MA 02139
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | | | | | - Luke M. Davis
- Department of Chemistry, Tufts University, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, MA 02155
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| |
Collapse
|
3
|
Loos JN, D'Acierno F, Vijay Mody U, MacLachlan MJ. Manipulating the Self-Assembly of Multicomponent Low Molecular Weight Gelators (LMWGs) through Molecular Design. Chempluschem 2022; 87:e202200026. [PMID: 35233979 DOI: 10.1002/cplu.202200026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Indexed: 12/21/2022]
Abstract
Multicomponent low molecular weight gelators (LMWGs) may self-assemble by co-assembly (CA), social self-sorting (SSS), or narcissistic self-sorting (NSS). Understanding the nuances of the self-assembly processes is important to predict the behavior of multicomponent organogels. Here, we investigate the effect of molecular structure on self-assembly in a series of amino-acid based bicomponent LMWGs that differ in headgroup and alkyl chain length. Packing preference of the organogels was determined using differential scanning calorimetry, nuclear magnetic resonance spectroscopy and small angle X-ray scattering. From 66 bicomponent samples we found 50 CA, 14 SSS and 2 NSS. Furthermore, we performed statistical analysis to investigate the role of hydrophobicity and chain length on the overall pathway of self-assembly for these systems. We found the hydrophobicity of the headgroup strongly affected the assembly preference of the organogel, but alkyl chain length only played a small role.
Collapse
Affiliation(s)
- Jeanette N Loos
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Francesco D'Acierno
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Rd., Vancouver, British Columbia, V6T 1Z1, Canada
| | - Urmi Vijay Mody
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Mark J MacLachlan
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, 2355 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|