1
|
Miksa B, Trzeciak K, Kaźmierski S, Rozanski A, Potrzebowski M, Rozga-Wijas K, Sobotta L, Ziabka M, Płódowska M, Szary K. Nature-Inspired Synthesis of Yeast Capsule Replicas Encased with Silica-Vinyl Functionality: New Fluorescent Hollow Hybrid Microstructures. Molecules 2024; 29:5363. [PMID: 39598752 PMCID: PMC11597162 DOI: 10.3390/molecules29225363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Yeast capsules (YCs) produced from Saccharomyces cerevisiae with encapsulated fluorescent phenosafranin and azure dyes were used as catalytic template guides for developing hybrid functional organic/inorganic hollow microstructures with silica (SiO2) deposited on their surface generated in the imidazole-buffered system without the addition of any cationic surfactant. YCs-doped with SiO2 act as fluorescence emitters maintaining dye-loaded materials by sealing the microporous surface of YCs. We used vinyltrimethoxysilane as a precursor of SiO2 endowed with functional vinyl groups facilitating their further modification without disturbing the polysaccharide wall integrity. Consequently, the hybrid fluorescent polysaccharide/silica microcapsules (YC@dye@SiO2) are promising for wide-ranging optoelectronic applications in electrochromic and OLED devices with biocompatibility and biodegradability properties.
Collapse
Affiliation(s)
- Beata Miksa
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Slawomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Artur Rozanski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Marek Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Krystyna Rozga-Wijas
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 25-406 Poznan, Poland;
| | - Magdalena Ziabka
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Swiętokrzyska 15, 25-406 Kielce, Poland;
| | - Karol Szary
- Institute of Physics, Jan Kochanowski University, Swiętokrzyska 15, 25-406 Kielce, Poland;
- Holy Cross Cancer Center, S Artwinskiego 3, 25-734 Kielce, Poland
| |
Collapse
|
2
|
Jia J, Wang X, Lin X, Zhao Y. Engineered Microorganisms for Advancing Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313389. [PMID: 38485221 DOI: 10.1002/adma.202313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed. This review presents a comprehensive survey of innovative tumor therapeutic strategies based on a series of representative engineered microorganisms, including bacteria, viruses, microalgae, and fungi. Specifically, it offers extensive analyses of the design principles, engineering strategies, and tumor therapeutic mechanisms, as well as the advantages and limitations of different engineered microorganism-based systems. Finally, the current challenges and future research prospects in this field, which can inspire new ideas for the design of creative tumor therapy paradigms utilizing engineered microorganisms and facilitate their clinical applications, are discussed.
Collapse
Affiliation(s)
- Jinxuan Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
3
|
Lv Y, Wang Y, Zhang X. Construction of Mineralization Nanostructures in Polymers for Mechanical Enhancement and Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309313. [PMID: 38164816 DOI: 10.1002/smll.202309313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Mineralization capable of growing inorganic nanostructures efficiently, orderly, and spontaneously shows great potential for application in the construction of high-performance organic-inorganic composites. As a thermodynamically spontaneous solid-phase crystallization reaction involving dual organic and inorganic components, mineralization allows for the self-assembly of sophisticated and exclusive nanostructures within a polymer matrix. It results in a diversity of functions such as enhanced strength, toughness, electrical conductivity, selective permeability, and biocompatibility. While there are previous reviews discussing the progress of mineralization reactions, many of them overlook the significant benefits of interfacial regulation and functionalization that come from the incorporation of mineralized structures into polymers. Focusing on different means of assembly of mineralized nanostructures in polymer, the work analyzes their design principles and implementation strategies. Then, their different advantages and disadvantages are analyzed by combining nanostructures with organic substrates as well as involving the basis of different functionalizations. It is anticipated to provide insights and guidance for the future development of mineralized polymer composites and their application designs.
Collapse
Affiliation(s)
- Yuesong Lv
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuyan Wang
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, D-78457, Konstanz, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
5
|
Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. J Inorg Biochem 2022; 232:111815. [DOI: 10.1016/j.jinorgbio.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
6
|
Abstract
Fungi are key organisms of the biosphere with major roles in organic-matter decomposition, element cycling, plant pathogenicity, and symbioses in aquatic and terrestrial habitats. The vast majority exhibit a filamentous, branching growth form and are aerobic chemoorganotrophs that derive carbon and energy from organic substances, and are particularly associated with soil, the plant-root zone, and rock surfaces. It is now known that some fungi are lithotrophs, deriving energy from the oxidation of inorganic materials, whereas others are photoheterotrophs, deriving additional energy from light for organic matter utilization when oxygen is limited. This means that fungi are of much wider environmental significance than previously thought and explains their ubiquity in locations previously thought to be inimical to fungal existence, such as the deep subsurface and other anaerobic locations. In addition to such free-living species, fungi associated with photosynthetic partners are also of profound biosphere importance. For example, lichens, which are composed of a symbiotic association between a fungus and a phototrophic alga and/or cyanobacterium, are pioneer colonizers and bioweathering agents of rocks and minerals. Mycorrhizas are symbiotic, plant-root-associated fungi found to colonize the majority of plant genera, where they improve plant nutrition through solubilization of essential metals and phosphate from soil minerals. Biomineralization in the soil can also immobilize toxic metals in the vicinity of plant roots, thereby benefiting plant colonization and facilitating revegetation of contaminated habitats. Wherever fungi are found, transformation of metals and minerals is a key aspect of their activity, with biomineralization an important feature. Fungal biomineralization is an important facet of geomycology - namely the roles of fungi in geochemical and geophysical processes. This article seeks to highlight the concept of biomineralization as applied to fungi, the occurrence and significance of important fungal biominerals in natural and synthetic environments, and the applied potential of fungal biomineralization in nanobiotechnology.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Changping District, Beijing 102249, China.
| |
Collapse
|
7
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
8
|
|
9
|
Cui Y, Li B, Wang X, Tang R. Organism–Materials Integration: A Promising Strategy for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yihao Cui
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Benke Li
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
10
|
Chang Y, Chen S, Liu T, Liu P, Guo Y, Yang L, Ma X. Yeast cell route: a green and facile strategy for biosynthesis of carbonate nanoparticles. CrystEngComm 2021. [DOI: 10.1039/d1ce00592h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A bioinspired strategy was proposed to synthesize biocompatible BaCO3 nanoparticles according to intracellular chemical reactions using tactfully the interaction of endogenous CO32− and exogenous Ba2+ under normal growth conditions of yeast cells.
Collapse
Affiliation(s)
- Yi Chang
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Shuting Chen
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Tingting Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- China
| | - Peng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- China
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| |
Collapse
|
11
|
Cano M, Giner-Casares JJ. Biomineralization at fluid interfaces. Adv Colloid Interface Sci 2020; 286:102313. [PMID: 33181402 DOI: 10.1016/j.cis.2020.102313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Biomineralization is of paramount importance for life on Earth. The delicate balance of physicochemical interactions at the interface between organic and inorganic matter during all stages of biomineralization resembles an extremely high complexity. The coordination of this sophisticated biological machinery and physicochemical scenarios is certainly a wonderful show of nature. Understanding of the biomineralization processes is still far from complete. The recent advances in biomineralization research from the Colloid and Interface Science perspective are reviewed herein. The synergy between this two fields of research is demonstrated. The unique opportunities offered by purposefully designed fluid interfaces, mainly Langmuir monolayers are presented. Biomedical applications of biomineral-based nanostructures are discussed, showing their improved biocompatibility and on-demand delivery features. A brief guide to the array of state-of-the-art experimental techniques for unraveling the mechanisms of biomineralization using fluid interfaces is included. In summary, the fruitful and exciting crossroad between Colloid and Interface Science with Biomineralization is exhibited.
Collapse
|
12
|
Chang Y, Han H, Liu T, Yuan S, Chen S, Guo Y, Yang L, Ma X. Cell-tailored calcium carbonate particles with different crystal forms from nanoparticle to nano/microsphere. RSC Adv 2020; 10:43233-43241. [PMID: 35514929 PMCID: PMC9058178 DOI: 10.1039/d0ra07393h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
Inspired by biomineralization, the first synthesis of size-tunable calcium carbonates from nanoparticles (YC-CaCO3 NPs) to nano/microspheres (YC-CaCO3 N/MSs) with a porous structure was accomplished using a facile method under the mediation of the secretion from yeast cells (YCs). The biomolecules derived from the secretion of YCs were used as conditioning and stabilizing agents to control the biosynthesis of the YC-CaCO3 materials. The morphology and crystal forms of YC-CaCO3 materials can be affected by the biomolecules from the secretion of YCs. With increasing concentrations of biomolecules, the morphologies of the obtained CaCO3 materials changed from nanoparticles to nano/microspheres with a porous structure, while the crystal forms transformed from amorphous to calcite. Functional investigations showed that YC-CaCO3 NSs with a porous structure effectively acted as anticancer drug carriers with accurate and selective drug release in tumor tissue, which suggests that they have great potential to function as a therapeutic delivery system. These application features are mainly attributed to the satisfactory biocompatibility and biodegradability, high drug-loading capacity, and pH-dependent sustained drug release performance of the porous YC-CaCO3 NSs. The biomimetic synthesis strategy of YC-CaCO3 materials mediated by YC secretion not only helps to shed light on the biomineralization mechanism in organisms, but may also lead to a new means of biosynthesizing organic-inorganic nanocomposites.
Collapse
Affiliation(s)
- Yi Chang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huijuan Han
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang Henan 453007 P. R. China
| | - Tingting Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shibao Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shuting Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Lin Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|