1
|
Peng M, Ari D, Roisnel T, Doucet H, Soulé JF. Rhodium(i)-catalyzed cascade C(sp 2)-H bond alkylation - amidation of anilines: phosphorus as traceless directing group. Chem Sci 2023; 14:9055-9062. [PMID: 37655033 PMCID: PMC10466282 DOI: 10.1039/d3sc02992a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
We introduce a versatile Rh(i)-catalyzed cascade reaction, combining C(sp2)-H bond functionalization and amidation between N-arylphosphanamines and acrylates. This innovative approach enables the rapid synthesis of dihydroquinolinone scaffolds, a common heterocycle found in various pharmaceuticals. Notably, the presence of the phosphorus atom facilitates the aniline ortho-C(sp2)-H bond activation prior to N-P bond hydrolysis, streamlining one-pot intramolecular amidation. Moreover, we demonstrate the applicability of this reaction by synthesizing an antipsychotic drug. Detailed mechanistic investigations revealed the involvement of a Rh-H intermediate, with substrate inhibition through catalyst saturation.
Collapse
Affiliation(s)
- Marie Peng
- Univ. Rennes, CNRS UMR6226 Rennes F-3500 France
| | - Denis Ari
- Univ. Rennes, CNRS UMR6226 Rennes F-3500 France
| | | | | | - Jean-François Soulé
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences 75005 Paris France
| |
Collapse
|
2
|
Smith MB. The Backbone of Success of P,N-Hybrid Ligands: Some Recent Developments. Molecules 2022; 27:6293. [PMID: 36234830 PMCID: PMC9614609 DOI: 10.3390/molecules27196293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Organophosphorus ligands are an invaluable family of compounds that continue to underpin important roles in disciplines such as coordination chemistry and catalysis. Their success can routinely be traced back to facile tuneability thus enabling a high degree of control over, for example, electronic and steric properties. Diphosphines, phosphorus compounds bearing two separated PIII donor atoms, are also highly valued and impart their own unique features, for example excellent chelating properties upon metal complexation. In many classical ligands of this type, the backbone connectivity has been based on all carbon spacers only but there is growing interest in embedding other donor atoms such as additional nitrogen (-NH-, -NR-) sites. This review will collate some important examples of ligands in this field, illustrate their role as ligands in coordination chemistry and highlight some of their reactivities and applications. It will be shown that incorporation of a nitrogen-based group can impart unusual reactivities and important catalytic applications.
Collapse
Affiliation(s)
- Martin B Smith
- Department of Chemistry, Loughborough University, Loughborough, Leics LE11 3TU, UK
| |
Collapse
|
3
|
Rzayev J, Zhang Z, Durand N, Soulé JF. Upgrading Carbazolyl-Derived Phosphine Ligands Using Rh I-Catalyzed P III-Directed C-H Bond Alkylation for Catalytic CO 2-Fixation Reactions. Org Lett 2022; 24:6755-6760. [PMID: 36083787 DOI: 10.1021/acs.orglett.2c02514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an Rh(I)-catalyzed C-H bond alkylation of PhenCarPhos [N-(2-(diphenylphosphaneyl)phenyl)carbazole] and some congener phosphine ligands with alkenes. The C-H bond functionalization occurred exclusively at the C1 position of the carbazolyl unit because the trivalent phosphine acts as a directing group. This protocol provides straightforward access to a large library of C1-alkyl substituted PhenCarPhos, which outperformed common commercial or unfunctionalized phosphines and their precursors in the Pd-catalyzed carbon dioxide-fixation reactions with propargylic amines.
Collapse
Affiliation(s)
- Javid Rzayev
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Zhuan Zhang
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Natacha Durand
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
4
|
Bisht R, Haldar C, Hassan MMM, Hoque ME, Chaturvedi J, Chattopadhyay B. Metal-catalysed C-H bond activation and borylation. Chem Soc Rev 2022; 51:5042-5100. [PMID: 35635434 DOI: 10.1039/d1cs01012c] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transition metal-catalysed direct borylation of hydrocarbons via C-H bond activation has received a remarkable level of attention as a popular reaction in the synthesis of organoboron compounds owing to their synthetic versatility. While controlling the site-selectivity was one of the most challenging issues in these C-H borylation reactions, enormous efforts of several research groups proved instrumental in dealing with selectivity issues that presently reached an impressive level for both proximal and distal C-H bond borylation reactions. For example, in the case of ortho C-H bond borylation reactions, innovative methodologies have been developed either by the modification of the directing groups attached with the substrates or by creating new catalytic systems via the design of new ligand frameworks. Whereas meta and para selective C-H borylations remained a formidable challenge, numerous innovative concepts have been developed within a very short period of time by the development of new catalytic systems with the employment of various noncovalent interactions. Moreover, significant advancements have occurred for aliphatic C(sp3)-H borylations as well as enantioselective borylations. In this review article, we aim to discuss and summarize the different approaches and findings related to the development of directed proximal ortho, distal meta/para, aliphatic (racemic and enantioselective) borylation reactions since 2014. Additionally, considering the C-H borylation reaction as one of the most important mainstream reactions, various applications of this C-H borylation reaction toward the synthesis of natural products, therapeutics, and applications in materials chemistry will be summarized in the last part of this review article.
Collapse
Affiliation(s)
- Ranjana Bisht
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Chabush Haldar
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Mirja Md Mahamudul Hassan
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Md Emdadul Hoque
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Jagriti Chaturvedi
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
5
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Sadek O, Le Gac A, Hidalgo N, Mallet-Ladeira S, Miqueu K, Bouhadir G, Bourissou D. Metal-Free Phosphorus-Directed Borylation of C(sp 2 )-H Bonds. Angew Chem Int Ed Engl 2022; 61:e202110102. [PMID: 34719849 DOI: 10.1002/anie.202110102] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Indexed: 01/06/2023]
Abstract
Spectacular progress has recently been achieved in transition metal-catalyzed C-H borylation of phosphines as well as directed electrophilic C-H borylation. As shown here, P-directed electrophilic borylation provides a new, straightforward, and efficient access to phosphine-boranes. It operates under metal-free conditions and leverages simple, readily available substrates. It is applicable to a broad range of backbones (naphthyl, biphenyl, N-phenylpyrrole, binaphthyl, benzyl, naphthylmethyl) and gives facile access to various substitution patterns at boron (by varying the boron electrophile or post-derivatizing the borane moiety). NMR monitoring supports the involvement of P-stabilized borenium cations as key intermediates. DFT calculations reveal the existence and stabilizing effect of π-arene/boron interactions in the (biphenyl)(i-Pr)2 P→BBr2 + species.
Collapse
Affiliation(s)
- Omar Sadek
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Arnaud Le Gac
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Nereida Hidalgo
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599), 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA, Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053, Pau Cedex 09, France
| | - Ghenwa Bouhadir
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| |
Collapse
|
7
|
Sadek O, Le Gac A, Hidalgo N, Mallet‐Ladeira S, Miqueu K, Bouhadir G, Bourissou D. Metal‐Free Phosphorus‐Directed Borylation of C(sp
2
)−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Omar Sadek
- CNRS/Université Paul Sabatier Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Arnaud Le Gac
- CNRS/Université Paul Sabatier Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Nereida Hidalgo
- CNRS/Université Paul Sabatier Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Sonia Mallet‐Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254) Hélioparc 2 Avenue du Président Angot 64053 Pau Cedex 09 France
| | - Ghenwa Bouhadir
- CNRS/Université Paul Sabatier Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| |
Collapse
|
8
|
Fukuda K, Harada T, Iwasawa N, Takaya J. Facile Synthesis and Utilization of Bis(o-phosphinophenyl)zinc as Isolable PZnP-pincer Ligands Enabled by Boron-Zinc Double Transmetallation. Dalton Trans 2022; 51:7035-7039. [DOI: 10.1039/d2dt01222g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(o-phosphinophenyl)zinc derivatives were successfully synthesized by the reaction of o-phosphinophenylboronates with dimethylzinc via boron-zinc double transmetallation. The transmetallation was significantly accelerated by the presence of the ortho PR2 substituent to...
Collapse
|
9
|
Thongpaen J, Manguin R, Kittikool T, Camy A, Roisnel T, Dorcet V, Yotphan S, Canac Y, Mauduit M, Baslé O. Ruthenium–NHC complex-catalyzed P( iii)-directed C–H borylation of arylphosphines. Chem Commun (Camb) 2022; 58:12082-12085. [DOI: 10.1039/d2cc03909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate NHC-based ruthenium catalyst for P(III)-directed ortho C–H borylation of arylphosphines.
Collapse
Affiliation(s)
- Jompol Thongpaen
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Romane Manguin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Tanakorn Kittikool
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Aurèle Camy
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Mauduit
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
Sire C, Cattey H, Tsivery A, Hierso J, Roger J. Phosphorus‐Directed Rhodium‐Catalyzed C−H Arylation of 1‐Pyrenylphosphines Selective at the
K
‐Region. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Charline Sire
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Anthonia Tsivery
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Jean‐Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| |
Collapse
|
11
|
Jacob C, Maes BUW, Evano G. Transient Directing Groups in Metal-Organic Cooperative Catalysis. Chemistry 2021; 27:13899-13952. [PMID: 34286873 DOI: 10.1002/chem.202101598] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/13/2022]
Abstract
The direct functionalization of C-H bonds is among the most fundamental chemical transformations in organic synthesis. However, when the innate reactivity of the substrate cannot be utilized for the functionalization of a given single C-H bond, this selective C-H bond functionalization mostly relies on the use of directing groups that allow bringing the catalyst in close proximity to the C-H bond to be activated and these directing groups need to be installed before and cleaved after the transformation, which involves two additional undesired synthetic operations. These additional steps dramatically reduce the overall impact and the attractiveness of C-H bond functionalization techniques since classical approaches based on substrate pre-functionalization are sometimes still more straightforward and appealing. During the past decade, a different approach involving both the in situ installation and removal of the directing group, which can then often be used in a catalytic manner, has emerged: the transient directing group strategy. In addition to its innovative character, this strategy has brought C-H bond functionalization to an unprecedented level of usefulness and has enabled the development of remarkably efficient processes for the direct and selective introduction of functional groups onto both aromatic and aliphatic substrates. The processes unlocked by the development of these transient directing groups will be comprehensively overviewed in this review article.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium
| |
Collapse
|
12
|
Zhang M, Wu H, Yang J, Huang G. A Computational Mechanistic Analysis of Iridium-Catalyzed C(sp3)–H Borylation Reveals a One-Stone–Two-Birds Strategy to Enhance Catalytic Activity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mei Zhang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jinjin Yang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
13
|
Affiliation(s)
- Marin R. Auth
- Department of Chemistry and Biochemistry University of San Diego San Diego CA 92110 USA
| | - Kathryn A. McGarry
- Department of Chemistry University of Wisconsin-Stevens Point Stevens Point WI 54481 USA
| | - Timothy B. Clark
- Department of Chemistry and Biochemistry University of San Diego San Diego CA 92110 USA
| |
Collapse
|